首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatitis C virus (HCV) is a major causative agent in liver disease. In order to investigate if Korean type HCV core protein and its related mutants, S99Q and S1161, are cytopathic to liver, three types of transgenic mice were established. The expression of transgenes was confirmed by HCV specific RT-PCR and Western immunoblotting. The livers of all wild type core and S1161 transgenic lineages remained largely histologically normal. However, the livers of the S99Q transgenic mice showed significant high level of cell dysplasia associated with the transgene expression in hepatocytes largely located around the central veins by in situ hybridization analysis. In conclusion, the mutant HCV core protein at S99Q may contribute to the progress of HCV induced liver disease.  相似文献   

2.
3.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase, NS5B protein, is the key viral enzyme responsible for replication of the HCV viral RNA genome. Although several full-length and truncated forms of the HCV NS5B proteins have been expressed previously in insect cells, contamination of host terminal transferase (TNTase) has hampered analysis of the RNA synthesis initiation mechanism using natural HCV RNA templates. We have expressed the HCV NS5B protein in insect cells using a recombinant baculovirus and purified it to near homogeneity without contaminated TNTase. The highly purified recombinant HCV NS5B was capable of copying 9.6-kb full-length HCV RNA template, and mini-HCV RNA carrying both 5'- and 3'-untranslated regions (UTRs) of the HCV genome. In the absence of a primer, and other cellular and viral factors, the NS5B could elongate over HCV RNA templates, but the synthesized products were primarily in the double stranded form, indicating that no cyclic replication occurred with NS5B alone. RNA synthesis using RNA templates representing the 3'-end region of HCV minus-strand RNA and the X-RNA at the 3'-end of HCV RNA genome was also initiated de novo. No formation of dimer-size self-primed RNA products resulting from extension of the 3'-end hydroxyl group was observed. Despite the internal de novo initiation from the X-RNA, the NS5B could not initiate RNA synthesis from the internal region of oligouridylic acid (U)(20), suggesting that HCV RNA polymerase initiates RNA synthesis from the selected region in the 3'-UTR of HCV genome.  相似文献   

4.
吕巍  薛英 《物理化学学报》2011,27(6):1407-1416
在丙型肝炎病毒(HCV)的基因复制和蛋白质成熟的过程中, 非结构蛋白5B(NS5B)作为RNA依赖的RNA聚合酶起到了重要的作用. 抑制NS5B聚合酶可以阻止丙型肝炎病毒的RNA复制, 因此成为一种治疗丙型肝炎的有效方法. 通过计算机方法进行虚拟筛选和预测NS5B聚合酶抑制剂已经变得越来越重要. 本文主要采用机器学习方法(支持向量机(SVM)、k-最近相邻法(k-NN)和C4.5决策树(C4.5 DT))对已知的丙型肝炎病毒NS5B蛋白酶抑制剂与非抑制剂建立分类预测模型. 1248个结构多样性化合物(552个NS5B抑制剂与696个非NS5B抑制剂)被用于测试分类预测系统, 并用递归变量消除法选择与NS5B抑制剂相关的性质描述符以提高预测精度. 独立验证集的总预测精度为84.1%-85.0%, NS5B抑制剂的预测精度为81.4%-91.7%, 非NS5B抑制剂的预测精度为78.2%-87.2%. 其中支持向量机给出最好的NS5B抑制剂预测精度(91.7%); C4.5决策树给出最好的非NS5B抑制剂预测精度(87.2%); k-最近相邻法给出最好的总预测精度(85.0%). 研究表明机器学习方法可以有效预测未知数据集中潜在的NS5B抑制剂, 并有助于发现与其相关的分子描述符.  相似文献   

5.
Hepatitis C virus (HCV) is a major health problem across the world affecting the people of all age groups. It is the main cause of hepatitis and at chronic stage causes liver cirrhosis and hepatocellular carcinoma. Various therapeutics are made against HCV but still there is a need to find out potential therapeutics to combat the virus. The goal of this study is to identify the phytochemicals of Azadirachta indica leaves having antiviral activity against HCV NS3 protease through molecular docking and simulation approach. Results show that the compound 3-Deacetyl-3-cinnamoyl-azadirachtin possesses good binding properties with HCV NS3/4A protease. It can be concluded from this study that Deacetyl-3-cinnamoyl-azadirachtin may serve as a potential inhibitor against NS3/4A protease.  相似文献   

6.
LI Bin 《有机化学》2003,23(Z1):3-3
NS5A is one of the non-structural gene products encoded by Hepatitis C virus (HCV) and related viruses that are essential for viral replication. The amino acid sequence of NS5A is conserved between different HCV genotypes and the primary amino acid sequence of NS5A is unique to HCV and closely related viruses. Importantly, NS5A is unrelated to any human protein. This indicates that drugs designed to block the actions of NS5A could inhibit the replication of HCV without showing toxic side effects in human host cells, thus making NS5A inhibitors ideal anti-viral drugs. However, there are presently no functional assays for this essential viral protein. Therefore, conventional high throughput screening (HTS) approaches can not be used to discover antiviral drugs against NS5A.  相似文献   

7.
8.
Terminalia chebula Retz. forms a key component of traditional folk medicine and is also reported to possess antihepatitis C virus (HCV) and immunomodulatory activities. However, information on the intermolecular interactions of phytochemicals from this plant with HCV and human proteins are yet to be established. Thus, by this current study, we investigated the HCV NS3/4A inhibitory and host immune-modulatory activity of phytocompounds from T. chebula through in silico strategies involving network pharmacology and structural bioinformatics techniques. To start with, the phytochemical dataset of T. chebula was curated from biological databases and the published literature. Further, the target ability of the phytocompounds was predicted using BindingDB for both HCV NS3/4A and other probable host targets involved in the immune system. Further, the identified targets were docked to the phytochemical dataset using AutoDock Vina executed through the POAP pipeline. The resultant docked complexes with significant binding energy were subjected to 50 ns molecular dynamics (MD) simulation in order to infer the stability of complex formation. During network pharmacology analysis, the gene set pathway enrichment of host targets was performed using the STRING and Reactome pathway databases. Further, the biological network among compounds, proteins, and pathways was constructed using Cytoscape 3.6.1. Furthermore, the druglikeness, side effects, and toxicity of the phytocompounds were also predicted using the MolSoft, ADVERpred, and PreADMET methods, respectively. Out of 41 selected compounds, 10 were predicted to target HCV NS3/4A and also to possess druglike and nontoxic properties. Among these 10 molecules, Chebulagic acid and 1,2,3,4,6-Pentagalloyl glucose exhibited potent HCV NS3/4A inhibitory activity, as these scored a lowest binding energy (BE) of −8.6 kcal/mol and −7.7 kcal/mol with 11 and 20 intermolecular interactions with active site residues, respectively. These findings are highly comparable with Asunaprevir (known inhibitor of HCV NS3/4A), which scored a BE of −7.4 kcal/mol with 20 key intermolecular interactions. MD studies also strongly suggest that chebulagic acid and 1,2,3,4,6-Pentagalloyl glucose as promising leads, as these molecules showed stable binding during 50 ns of production run. Further, the gene set enrichment and network analysis of 18 protein targets prioritized 10 compounds and were predicted to potentially modulate the host immune system, hemostasis, cytokine levels, interleukins signaling pathways, and platelet aggregation. On overall analysis, this present study predicts that tannins from T. chebula have a potential HCV NS3/4A inhibitory and host immune-modulatory activity. However, further experimental studies are required to confirm the efficacies.  相似文献   

9.
The urgent need for novel HCV antiviral agents has provided an impetus for understanding the structural requisites of NS5B polymerase inhibitors at the molecular level. Toward this objective, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) of 67 HCV NS5B polymerase inhibitors were performed using two methods. First, ligand-based 3D QSAR studies were performed based on the lowest energy conformations employing the atom fit alignment method. Second, receptor-based 3D QSAR models were derived from the predicted binding conformations obtained by docking all NS5B inhibitors at the allosteric binding site of NS5B (PDB ID: 2dxs). Results generated from the ligand-based model were found superior (r2cv values of 0.630 for CoMFA and 0.668 for CoMSIA) to those obtained by the receptor-based model (r2cv values of 0.536 and 0.561 for CoMFA and CoMSIA, respectively). The predictive ability of the models was validated using a structurally diversified test set of 22 compounds that had not been included in a preliminary training set of 45 compounds. The predictive r2 values for the ligand-based CoMFA and CoMSIA models were 0.734 and 0.800, respectively, while the corresponding predictive r2 values for the receptor-based CoMFA and CoMSIA models were 0.538 and 0.639, respectively. The greater potency of the tryptophan derivatives over that of the tyrosine derivatives was interpreted based on CoMFA steric and electrostatic contour maps. The CoMSIA results revealed that for a NS5B inhibitor to have appreciable inhibitory activity it requires hydrogen bond donor and acceptor groups at the 5-position of the indole ring and an R substituent at the chiral carbon, respectively. Interpretation of the CoMFA and CoMSIA contour maps in context of the topology of the allosteric binding site of NS5B provided insight into NS5B-inhibitor interactions. Taken together, the present 3D QSAR models were found to accurately predict the HCV NS5B polymerase inhibitory activity of structurally diverse test set compounds and to yield reliable clues for further optimization of the benzimidazole derivatives in the data set.  相似文献   

10.
Roh C  Jo SK 《Talanta》2011,85(5):2639-2642
In this study, we elucidated a small molecule inhibitor on viral protein NS5B identified through a high-throughput screening strategy using optical nanoparticle-based RNA oligonucleotide. We have previously shown that quantum dots (QDs)-RNA oligonucleotide can specifically recognize the HCV viral proteins. We have also demonstrated that conjugated QDs-RNA oligonucleotide can specifically and sensitively interact with designed biochips [1] and [2]. Among the flavonoids examined, (−)-epigallocatechin gallate (EGCG) demonstrated a remarkable inhibition activity on HCV viral protein, NS5B. (−)-Epigallocatechin gallate, at 0.005 μg mL−1 or more, concentration-dependently attenuated the binding affinity on a designed biochip as evidenced by QDs-RNA oligonucleotide. At a concentration of 0.1 μg mL−1, (−)-epigallocatechin gallate showed a 50% inhibition activity on QDs-RNA oligonucleotide biochip assay. We screened a small molecule inhibitor on the viral protein, NS5B, identified through a high-throughput screening strategy using on-chip optical nanoparticle-based RNA oligonucleotide on chip. In this designed strategy, the convenient and efficient screening and development of an on-chip viral protein inhibitor using a QDs-RNA oligonucleotide assay is achievable with high sensitivity and simplicity. In addition, this platform is expected to be applicable toward the inhibitor screening of other types of diseases.  相似文献   

11.
The virally encoded NS3 protease is essential to the life cycle of the hepatitis C virus (HCV), an important human pathogen causing chronic hepatitis, cirrhosis of the liver, and hepatocellular carcinoma. The design and synthesis of 15-membered ring beta-strand mimics which are capable of inhibiting the interactions between the HCV NS3 protease enzyme and its polyprotein substrate will be described. The binding interactions between a macrocyclic ligand and the enzyme were explored by NMR and molecular dynamics, and a model of the ligand/enzyme complex was developed.  相似文献   

12.
Dengue virus nonstructural protein 4B (NS4B) is a membrane protein consisting of 248 residues with a crucial role in virus replication and interference with the host innate immunity. The dengue virus serotype 3 NS4B was reconstituted into lyso‐myristoyl phosphatidylglycerol (LMPG) micelles. Backbone resonance assignment of NS4B was obtained using conventional solution NMR experiments. Further studies suggested that NS4B contained eleven helices and six of them form five potential transmembrane regions. This study provides atomic level information for an important drug target to control flavivirus infections.  相似文献   

13.
Telaprevir is a potent, selective, peptidomimetic inhibitor of the hepatitis C virus (HCV) NS3‐4A serine protease. it is used for the treatment of HCV infection in combination with peginterferon alfa and ribavirin. In the present work, the E–Z isomerization process of telaprevir in solution was revealed by online HPLC–DAD (diode array detector)–MS, variable‐temperature and variable‐gradient experiments. The molecular geometry information of the two isomers was established by molecular mechanics calculations, and good correlation between the two isomers' UV–vis spectra and their molecular geometry information was also discovered. In addition, it was revealed by molecular docking that the two isomers have different affinities to HCV NS3?4A protease, and the Z isomer, the minor form of telaprevir in solution, is the more effective inhibitor of HCV NS3?4A protease. The investigation can provide more structure information about telaprevir in solution and in the binding process of HCV NS3?4A protease.  相似文献   

14.
BackgroundHepatitis C Virus (HCV) infection is a major public health concern across the globe. At present, direct-acting antivirals are the treatment of choice. However, the long-term effect of this therapy has yet to be ascertained. Previously, fluoroquinolones have been reported to inhibit HCV replication by targeting NS3 protein. Therefore, it is logical to hypothesize that the natural analogs of fluoroquinolones will exhibit NS3 inhibitory activity with substantially lesser side effects.MethodIn this study, we tested the application of a recently devised integrated in-silico Cheminformatics-Molecular Docking approach to identify physicochemically similar natural analogs of fluoroquinolones from the available databases (Ambinter, Analyticon, Indofines, Specs, and TimTec). Molecular docking and ROC curve analyses were performed, using PatchDock and Graphpad software, respectively, to compare and analyze drug-protein interactions between active natural analogs, Fluoroquinolones, and HCV NS3 protein.ResultIn our analysis, we were able to shortlist 18 active natural analogs, out of 10,399, that shared physicochemical properties with the template drugs (fluoroquinolones). These analogs showed comparable binding efficacy with fluoroquinolones in targeting 32 amino acids in the HCV NS3 active site that are crucial for NS3 activity. Our approach had around 80 % sensitivity and 70 % specificity in identifying physicochemically similar analogs of fluoroquinolones.ConclusionOur current data suggest that our approach can be efficiently applied to identify putative HCV drug inhibitors that can be taken for in vitro testing. This approach can be applied to discover physicochemically similar analogs of virtually any drug, thus providing a speedy and inexpensive approach to complement drug discovery and design, which can tremendously economize on time and money spent on the screening of putative drugs.  相似文献   

15.
Hepatitis C virus (HCV) NS3/4A protease is an attractive target for the development of antiviral therapy. However, the evolution of antiviral drug resistance is a major problem for treatment of HCV infected patients. Understanding of drug-resistance mechanisms at molecular level is therefore very important for the guidance of further design of antiviral drugs with high efficiency and specificity. Paritaprevir is a potent inhibitor against HCV NS3/4A protease genotype 1a. Unfortunately, this compound is highly susceptible to the substitution at D168 in the protease. In this work, molecular dynamics simulations of paritaprevir complexed with wild-type (WT) and two mutated strains (D168 N and D168Y) were carried out. Due to such mutations, the inhibitor-protein hydrogen bonding between them was weakened and the salt-bridge network among residues R123, R155 and D168 responsible for inhibitor binding was disrupted. Moreover, the per-residue free energy decomposition suggested that the main contributions from key residues such as Q80, V132, K136, G137 and R155 were lost in the D168 N/Y mutations. These lead to a lower binding affinity of paritaprevir for D168 N/Y variants of the HCV NS3/4A protease, consistent with the experimental data. This detailed information could be useful for further design of high potency anti-HCV NS3/4A inhibitors.  相似文献   

16.
Abstract

Hepatitis C virus (HCV) infection is a global threat to human health with an estimated 1.75 million new cases in 2015. Our previous studies showed that the ethyl acetate extraction of Daphne papyracea exhibited an inhibitory effect towards the HCV NS3/4A protease and eight compounds were identified from the extract. In this study, we investigated which of the eight compounds was responsible for the inhibitory effect of the extract against the HCV NS3/4A protease. From both molecular docking and enzyme inhibition studies, (+)-usnic acid was shown to be the most active compound and could be used as a lead compound in developing novel anti-HCV agents.  相似文献   

17.
Drug discovery and design for inhibition of the Hepatitis C Virus (HCV) NS3/4A serine protease is a major challenge. The broad, shallow, and generally featureless nature of the active site makes it a difficult target for "hit" selection especially using standard docking programs. There are several macrocyclic NS3/4A protease inhibitors that have been approved or are in clinical trials to treat chronic HCV (alone or as combination therapy), but most of the current therapies for HCV infection have untoward side effects, indicating a continuing medical need for the discovery of novel therapeutics with improved efficacy. In this study, we designed and implemented a two-tiered and progressive docking regime that successfully identified five non-macrocyclic small molecules that show inhibitory activity in the low micromolar range. Of these, four compounds show varying inhibition against HCV subgenotypes 1b, 1a, 2a, and 4d. The top inhibitor (3) has an IC(50) value of 15 μM against both subgenotypes 1b and 2a of the NS3/4A protease enzyme. Another inhibitor, 1, inhibits all four subgenotypes with moderate activity, showing highest activity for genotype 2a (24 μM). The five inhibitors presented in this study could be valuable candidates for future hit to lead optimization. Additionally, enzyme-inhibitor interaction models presented herein provide key information regarding structural differences between the active sites of the NS3/4A protease of the HCV subgenotype 1a and 1b that might explain the variable inhibitory activity between subgenotypes of the small molecule inhibitors identified here.  相似文献   

18.
Hepatitis C virus (HCV) infection is a global health threat and current therapies warrant the need for novel HCV therapies. Several synthetic analogs targeting HCV serine protease and RNA-dependent RNA polymerase have entered clinical development. To investigate the novel HCV NS5B RdRp polymerase inhibitor, screening of a designed data set consisting of benzimidazole analogs by the FlexX docking approach was performed. Binding interactions at the active sites (PDB ID: 2DXS) were evaluated leading to the rationalization of further synthesis and evaluation procedures.  相似文献   

19.
Molecular modeling of inhibitor bound full length HCV NS3/4A protease structures proved to be a valuable tool in the design of a new series of potent NS3 protease inhibitors. Optimization of initial compounds provided 25a. The in vitro activity and selectivity as well as the rat pharmacokinetic profile of 25a compare favorably with the data for other NS3/4A protease inhibitors currently in clinical development for the treatment of HCV.  相似文献   

20.
Rapid, accurate structure determination of protein-ligand complexes is an essential component in structure-based drug design. We have developed a method that uses NMR protein chemical shift perturbations to spatially localize a ligand when it is complexed with a protein. Chemical shift perturbations on the protein arise primarily from the close proximity of electron current density from the ligand. In our approach the location of the center of the electron current density for a ligand aromatic ring was approximated by a point-dipole, and dot densities were used to represent ligand positions that are allowed by the experimental data. The dot density is increased in the region of space that is consistent for the most data. A surface can be formed in regions of the highest dot density that correlates to the center of the ligand aromatic ring. These surfaces allow for the rapid evaluation of ligand binding, which is demonstrated on a model system and on real data from HCV NS3 protease and HCV NS3 helicase, where the location of ligand binding can be compared to that obtained from difference electron density from X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号