首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A new 29Si solid-state MAS NMR experiment is described for investigating the framework structures of pure silica zeolites. The symmetry-based homonuclear dipolar recoupling sequence SR26411 has been incorporated into a two-dimensional NMR experiment to probe the Si-O-Si bonding connectivities and long-range Si-Si distances in zeolite frameworks. This dipolar recoupling sequence is shown to have a number of advantages over the J-coupling-based INADEQUATE experiment. For the clathrasil Sigma-2, it is demonstrated that there is excellent agreement between experimental double-quantum build-up curves obtained from a series of two-dimensional double-quantum correlation spectra and simulated curves which consider all Si-Si distances out to 8 A. This result suggests that this experiment could be used to solve zeolite frameworks with unknown structures.  相似文献   

2.
We introduce a new approach to frequency-selective homonuclear dipolar recoupling in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS). This approach, to which we give the acronym SEASHORE, employs alternating periods of double-quantum recoupling and chemical shift evolution to produce phase modulations of the recoupled dipole-dipole interactions that average out undesired couplings, leaving only dipole-dipole couplings between nuclear spins with a selected pair of NMR frequencies. In principle, SEASHORE is applicable to systems with arbitrary coupling strengths and arbitrary sets of NMR frequencies. Arbitrary MAS frequencies are also possible, subject only to restrictions imposed by the pulse sequence chosen for double-quantum recoupling. We demonstrate the efficacy of SEASHORE in experimental (13)C NMR measurements of frequency-selective polarization transfer in uniformly (15)N, (13)C-labeled L-valine powder and frequency-selective intermolecular polarization transfer in amyloid fibrils formed by a synthetic decapeptide containing uniformly (15)N, (13)C-labeled residues.  相似文献   

3.
Dipolar recoupling pulse sequences are of great importance in magic angle spinning solid-state NMR. Recoupling sequences are used for excitation of double-quantum coherence, which, in turn, is employed in experiments to estimate internuclear distances and molecular torsion angles. Much effort is spent on the design of recoupling sequences that are able to produce double-quantum coherence with high efficiency in demanding spin systems, i.e., spin systems with small dipole-dipole couplings and large chemical-shift anisotropies (CSAs). The sequence should perform robustly under a variety of experimental conditions. This paper presents experiments and computer calculations that extend the theory of double-quantum coherence preparation from the strong coupling/small CSA limit to the weak coupling limit. The performance of several popular dipole-dipole recoupling sequences-DRAWS, POST-C7, SPC-5, R1, and R2-are compared. It is found that the optimum performance for several of these sequences, in the weak coupling/large CSA limit, varies dramatically, with respect to the sample spinning speed, the magnitude and orientation of the CSAs, and the magnitude of dipole-dipole couplings. It is found that the efficiency of double-quantum coherence preparation by gamma-encoded sequences departs from the predictions of first-order theory. The discussion is supported by density-matrix calculations.  相似文献   

4.
We report the application of a dipolar recoupling sequence for the observation of (13)C-(13)C connectivities in biomolecules at high magnetic fields (B(0)≥ 21.1 T) and ultra-high magic angle spinning frequencies (ν(R) = 60 kHz). The efficiency and the robustness of this double-quantum technique are demonstrated on the YajG protein (19.6 kDa).  相似文献   

5.
A method is presented for detecting multiple xenon atoms in cavities of solid-state inclusion compounds using (129)Xe double quantum NMR spectroscopy. Double quantum filtered (129)Xe NMR spectra, performed on the xenon clathrate of Dianin's compound were obtained under high-resolution Magic-Angle Spinning (MAS) conditions, by recoupling the weak (129)Xe-(129)Xe dipole-dipole couplings that exist between xenon atoms in close spatial proximity. Because the (129)Xe-(129)Xe dipole-dipole couplings are generally weak due to dynamics of the atoms and to large internuclear separations, and since the (129)Xe Chemical Shift Anisotropy (CSA) tends to be relatively large, a very robust dipolar recoupling sequence was necessary, with the symmetry-based SR26 dipolar recoupling sequence proving appropriate. We have also attempted to measure the (129)Xe-(129)Xe dipole-dipole coupling constant between xenon atoms in the cavities of the xenon-Dianin's compound clathrate and have found that the dynamics of the xenon atoms (as investigated with molecular dynamics simulations) as well as (129)Xe multiple spin effects complicate the analysis. The double quantum NMR method is useful for peak assignment in (129)Xe NMR spectra because peaks arising from different types of absorption/inclusion sites or from different levels of occupancy of single sites can be distinguished. The method can also help resolve ambiguities in diffraction experiments concerning the order/disorder in a material.  相似文献   

6.
In this paper we describe solid-state NMR experiments that provide information on the structures of surface-immobilized peptides. The peptides are covalently bound to alkanethiolates that are self-assembled as monolayers on colloidal gold nanoparticles. The secondary structure of the immobilized peptides was characterized by quantifying the Ramachandran angles phi and psi. These angles were determined in turn from distances between backbone carbonyl 13C spins, measured with the double-quantum filtered dipolar recoupling with a windowless sequence experiment, and by determination of the mutual orientation of chemical shift anisotropy tensors of 13C carbonyl spins on adjacent peptide planes, obtained from the double-quantum cross-polarization magic-angle spinning spectrum. It was found that peptides composed of periodic sequences of leucines and lysines were bound along the length of the peptide sequence and displayed a tight alpha-helical secondary structure on the gold nanoparticles. These results are compared to similar studies of peptides immobilized on hydrophobic surfaces.  相似文献   

7.
We studied the possibility of using double-quantum homonuclear dipolar recoupling magic angle spinning nuclear magnetic resonance experiments for structural analysis of systems of half-integer quadrupolar nuclei. We investigated symmetry-based recoupling schemes R2(2) (1) and R2(2) (1)R2(2) (-1) and showed that the obtained double-quantum filtered signals depend substantially on magnitudes and relative orientations of dipolar and quadrupolar tensors. Experimental results measured on aluminophosphate molecular sieve AlPO(4)-14, containing dipolar-coupled spin-52 aluminum nuclei, were compared to results of time-consuming numerical simulations. The comparison for short mixing times allowed us to roughly measure internuclear Al-Al distances, if constraints about relative tensor orientations were available. Inspection of relative orientations of dipolar and quadrupolar tensors, using known distances between nuclei, required experimental and simulated data for long mixing times and yielded less accurate results. Two experimental protocols were employed for measuring double-quantum filtered curves, the symmetric protocol, in which excitation and reconversion periods are incremented simultaneously, and the asymmetric protocol, in which only the length of the excitation period is incremented and the length of the reconversion period is kept constant. The former experimental protocol was more convenient for the detection of internuclear distances, and the latter one was more appropriate for the inspection of relative orientations of interaction tensors.  相似文献   

8.
An adiabatic double-quantum polarization-transfer experiment is described. It can be characterized as an adiabatic variant of the POST-C7 experiment. A continuous variation of the phase increment between pulses leads to the introduction of a fictitious Zeeman field that allows for an adiabatic passage through the recoupling condition. This results in a chemical-shift-offset-compensated adiabatic experiment, which leads to an efficient and broadbanded polarization transfer or to a double-quantum excitation. Similar variations of other C- or R-type experiments can be envisioned.  相似文献   

9.
Additional phase modulation (APM) is proposed to generally enhance the theoretical efficiency of homonuclear double-quantum (DQ) recoupling in solid-state NMR. APM applies an additional phase list to DQ recoupling in steps of an entire block. The sine-based phase list can enhance the theoretical efficiency by 15–30 %, from 0.52 to 0.68 (non-γ-encoded recoupling) or from 0.73 to 0.84 (γ-encoded recoupling), with doubled recoupling time. The genetic-algorithm (GA) optimized APM can adiabatically enhance the efficiency to ∼1.0 at longer times. The concept of APM has been tested on SPR-51, BaBa, and SPR-31, which represent γ-encoded recoupling, non-γ-encoded recoupling, and another kind beyond the former two, respectively. Simulations reveal that enhancements from APM are due to the activation of more crystallites in the powder. Experiments on 2,3-13C labeled alanine are used to validate the APM recoupling. This new concept shall shed light on developing more efficient homonuclear recoupling methods.  相似文献   

10.
Several approaches for utilizing dipolar recoupling solid-state NMR (ssNMR) techniques to determine local structure at high resolution in peptides and proteins have been developed. However, many of these techniques measure only one torsion angle or are accurate for only certain classes of secondary structure. Additionally, the efficiency with which these dipolar recoupling experiments suppress the deleterious effects of chemical shift anisotropy (CSA) at high magnetic field strengths varies. Dipolar recoupling with a windowless sequence (DRAWS) has proven to be an effective pulse sequence for exciting double-quantum (DQ) coherences between adjacent carbonyl carbons along the peptide backbone. By allowing this DQ coherence to evolve, it is possible to measure the relative orientations of the CSA tensors and subsequently use this information to determine the Ramachandran torsion angles phi and psi. Here, we explore the accuracies of the assumptions made in interpreting DQ-DRAWS data and demonstrate their fidelity in measuring torsion angles corresponding to a variety of secondary structures irrespective of hydrogen-bonding patterns. It is shown how a simple choice of isotopic labels and experimental conditions allows accurate measurement of backbone secondary structures without any prior knowledge. This approach is considerably more sensitive for determining structure in helices and has comparable accuracy for beta-sheet and extended conformations relative to other methods. We also illustrate the ability of DQ-DRAWS to distinguish between structures in heterogeneous samples.  相似文献   

11.
A double-quantum homonuclear correlation nuclear magnetic resonance experiment for dipolar-coupled half-integer quadrupolar nuclei in solids is presented. The experiment is based on rotary resonance dipolar recoupling and uses bracketed spin-lock pulses to excite double-quantum coherence and later to convert it to the zero-quantum one. A central-transition-selective pi pulse at the beginning of the t1 evolution period differentiates coherence transfer pathways of double-quantum coherences arising from coupled spins and from a single spin, so that the latter can be efficiently filtered out by phase cycling. The experiment was tested on an aluminophosphate molecular sieve AlPO4-14, a material with a variety of aluminum quadrupolar coupling constants, isotropic chemical shifts and homonuclear distances. In a two-dimensional spectrum aluminum dipolar couplings with internuclear distances between 2.9 and 5.5 A were resolved. Although the experiment requires an application of weak radio-frequency fields, frequency offsets did not affect its performance crucially.  相似文献   

12.
Using an analytical model based on multipole-multimode Floquet theory (MMFT), we describe the polarization loss (or depolarization) observed in double-quantum (DQ) dipolar recoupling magic angle spinning (MAS) experiments. Specifically, the factors responsible for depolarization are analyzed in terms of higher order corrections to the spin Hamiltonian in addition to the usual phenomenological decay rate constant. From the MMFT model and the effective Hamiltonians, we elucidate the rationale behind the inclusion of a phenomenological damping term in DQ recoupling experiments. As a test of this theoretical approach, the recoupling efficiency of one class of (13)C-(13)C and (13)C-(15)N resonance width dipolar recoupling experiments are investigated at different magnetic field strengths and compared with the more exact numerical simulations. In contrast to existing analytical treatments, the role of higher order corrections is clearly explained in the context of the MMFT approach leading to a better understanding of the underlying spin physics. Furthermore, the analytical model presented herein provides a general framework for describing coherent and incoherent effects in homonuclear and heteronuclear DQ MAS recoupling experiments.  相似文献   

13.
Measuring internuclear distances through dipolar interaction is a major challenge for solid-state nuclear magnetic resonance (NMR) spectroscopy. Obtaining reliable interatomic distances provides an access to the local structure in ordered or disordered solids. We show that at magic angle spinning (MAS) frequencies larger than ca. 50 kHz, some of the three-spin terms of the homogeneous homonuclear dipolar Hamiltonian can be used to promote the creation of double-quantum coherences between neighbouring (1)H or (19)F spins without using dipolar recoupling pulse sequences in the Dipolar Homonuclear Homogeneous Hamiltonian (DH(3)) double-quantum/single-quantum correlation experiment. This makes it possible to probe inter-nuclear spatial proximity with limited risk of probe or sample damage from radio-frequency (RF) irradiation, and is fully appropriate for fast repetition rate offering sensitivity gains in favourable cases. Experimental demonstrations are supported by multi-spin numerical simulations, which points to new possibilities for the characterization of spin-system geometries.  相似文献   

14.
We introduce a family of solid-state NMR pulse sequences that generalizes the concept of second averaging in the modulation frame and therefore provides a new approach to perform magic angle spinning dipolar recoupling experiments. Here, we focus on two particular recoupling mechanisms-cosine modulated rotary resonance (CMpRR) and cosine modulated recoupling with isotropic chemical shift reintroduction (COMICS). The first technique, CMpRR, is based on a cosine modulation of the rf phase and yields broadband double-quantum (DQ) (13)C recoupling using >70 kHz omega(1,C)/2pi rf field for the spinning frequency omega(r)/2=10-30 kHz and (1)H Larmor frequency omega(0,H)/2pi up to 900 MHz. Importantly, for p>or=5, CMpRR recouples efficiently in the absence of (1)H decoupling. Extension to lower p values (3.5相似文献   

15.
We report the use of optimal control algorithms for tailoring the effective Hamiltonians in nuclear magnetic resonance (NMR) spectroscopy through sophisticated radio-frequency (rf) pulse irradiation. Specifically, we address dipolar recoupling in solid-state NMR of powder samples for which case pulse sequences offering evolution under planar double-quantum and isotropic mixing dipolar coupling Hamiltonians are designed. The pulse sequences are constructed numerically to cope with a range of experimental conditions such as inhomogeneous rf fields, spread of chemical shifts, the intrinsic orientation dependencies of powder samples, and sample spinning. While the vast majority of previous dipolar recoupling sequences are operating through planar double-or zero-quantum effective Hamiltonians, we present here not only improved variants of such experiments but also for the first time homonuclear isotropic mixing sequences which transfers all I(x), I(y), and I(z) polarizations from one spin to the same operators on another spin simultaneously and with equal efficiency. This property may be exploited to increase the signal-to-noise ratio of two-dimensional experiments by a factor of square root 2 compared to conventional solid-state methods otherwise showing the same efficiency. The sequences are tested numerically and experimentally for a powder of (13)C(alpha),(13)C(beta)-L-alanine and demonstrate substantial sensitivity gains over previous dipolar recoupling experiments.  相似文献   

16.
[structure: see text]. The concept of dipolar recoupling is introduced to 1H-1H NOESY experiments performed under HRMAS conditions. Dipole-dipole couplings are selectively recoupled during the mixing period, while MAS ensures high resolution in the spectral dimensions. Incoherent dipolar exchange is replaced by amplified coherent processes, such that time scales for polarization transfer are shortened, and dipolar double-quantum techniques become applicable. In this way, dipole-dipole couplings, as well as J-couplings, can be individually measured.  相似文献   

17.
We report novel symmetry-based pulse sequences for exciting double-quantum (2Q) coherences between the central transitions of half-integer spin quadrupolar nuclei in the NMR of rotating solids. Compared to previous 2Q-recoupling techniques, numerical simulations and 23Na and 27Al NMR experiments on Na2SO4 and the open-framework aluminophosphate AlPO-CJ19 verify that the new dipolar recoupling schemes display higher robustness to both radio-frequency field inhomogeneity and to spreads in resonance frequencies. These advances allowed for the first demonstration of 2Q-recoupling in an amorphous solid for revealing its intermediate-range structural features, in the context of mapping 27Al-27Al connectivities between the aluminium polyhedra (AlO4, AlO5 and AlO6) of a lanthanum aluminate glass (La0.18Al0.82O1.5).  相似文献   

18.
The considerable demand of robust solid-state nuclear magnetic resonance (NMR) sequences has been met by the development in solid-state NMR hardware and probe design, particularly for fast magic angle spinning (MAS). Fast MAS enhances spectral resolution, however, it makes many conventional methods unusable because of the need of significantly high radiofrequency (RF) field strength and the intrinsic inefficiencies under such condition. Dipolar-based homonuclear recoupling sequences are widely used for structural analysis, and radio-frequency driven recoupling (RFDR) is one of the most popular zero-quantum (ZQ) homonuclear recoupling sequence. Previous studies demonstrated that RFDR efficiency strongly depends on factors such as MAS frequency, resonance offset, RF field inhomogeneity, and chemical shift anisotropy (CSA). To alleviate these dependencies, different RFDR phase cycles have been proposed. To completely understand the principle of ZQ recoupling sequences and achieve uniform broadband homonuclear recoupling under fast MAS conditions, we herein utilize the theory of symmetry sequences and propose a series of RNN1 (N ≥ 4, N is even) sequences with various phase cycles under both moderate and fast MAS conditions. We simulated the influence of MAS rate, resonance offset, RF field strength, RF mismatch, and heteronuclear decoupling on ZQ homonuclear polarization transfer efficiency. We verified the ZQ dipolar recoupling efficiencies of various RN symmetry sequences using U-13C, 15N-labeled L-histidine and microcrystalline U-13C, 15N-labeled dynein light chain (LC8) protein. The basic R4 sequence showed the worst broadband ZQ polarization transfer performance theoretically and experimentally, while the basic R6 sequence could efficiently achieve ZQ dipolar recoupling within moderate bandwidth. Under low to moderate MAS conditions, high-power 1H decoupling could considerably enhance the polarization transfer efficiency, while homonuclear recoupling sans heteronuclear decoupling is recommended under fast MAS conditions. Super phase cycling enhanced ZQ polarization transfer efficiency and bandwidth and resulted in significantly reduced sensitivity to RF mismatch. RNixy3 and RNixy4 sequences with 6*N and 8*N phase cycling steps, respectively, were preferred. The R4ixy3 sequence with fewer phase cycling steps showed comparable, or even slightly better, performance to the R4ixy4 sequence. As shown in the simulations, by choosing proper RF field strengths, 1.5*ωr < ω1 < 3*ωr, uniform broadband ZQ recoupling with R4ixy3 or R4ixy4 sequences could be achieved under fast MAS conditions, which would be significant for the accurate determination of spatial proximities and internuclear distances. By prolonging the mixing time, the RN ZQ scheme could provide more cross peaks, where medium- to long-range spatial correlations could be included; these correlations are essential for structural determination in complex systems.  相似文献   

19.
We present a new homonuclear recoupling sequence, CMAR, that allows observation of 2D 13C-13C correlation spectra at high magnetic fields and MAS frequencies (10-30 kHz). The main advantages of the sequence are that it provides efficient, broadband dipolar recoupling and concurrently decouples the 1H spins from the 13C's. Thus, no additional 1H decoupling is required during the mixing period, thereby significantly reducing the radio frequency power requirements for the experiment. Thus, CMAR significantly extends the range of applicability of the usual homonuclear recoupling techniques and should be of major interest for structure determinations of biomolecules at high magnetic fields.  相似文献   

20.
We describe a theoretical framework for understanding the heteronuclear version of the third spin assisted recoupling polarization transfer mechanism and demonstrate its potential for detecting long-distance intramolecular and intermolecular (15)N-(13)C contacts in biomolecular systems. The pulse sequence, proton assisted insensitive nuclei cross polarization (PAIN-CP) relies on a cross term between (1)H-(15)N and (1)H-(13)C dipolar couplings to mediate zero- and∕or double-quantum (15)N-(13)C recoupling. In particular, using average Hamiltonian theory we derive effective Hamiltonians for PAIN-CP and show that the transfer is mediated by trilinear terms of the form N(±)C(?)H(z) (ZQ) or N(±)C(±)H(z) (DQ) depending on the rf field strengths employed. We use analytical and numerical simulations to explain the structure of the PAIN-CP optimization maps and to delineate the appropriate matching conditions. We also detail the dependence of the PAIN-CP polarization transfer with respect to local molecular geometry and explain the observed reduction in dipolar truncation. In addition, we demonstrate the utility of PAIN-CP in structural studies with (15)N-(13)C spectra of two uniformly (13)C,(15)N labeled model microcrystalline proteins-GB1, a 56 amino acid peptide, and Crh, a 85 amino acid domain swapped dimer (MW=2×10.4 kDa). The spectra acquired at high magic angle spinning frequencies (ω(r)∕2π>20 kHz) and magnetic fields (ω(0H)∕2π=700-900 MHz) using moderate rf fields, yield multiple long-distance intramonomer and intermonomer (15)N-(13)C contacts. We use these distance restraints, in combination with the available x-ray structure as a homology model, to perform a calculation of the monomer subunit of the Crh protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号