首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A classical result states that every lower bounded superharmonic function on ${\mathbb{R}^{2}}$ is constant. In this paper the following (stronger) one-circle version is proven. If ${f : \mathbb{R}^{2} \to (-\infty,\infty]}$ is lower semicontinuous, lim inf|x|→∞ f (x)/ ln |x| ≥ 0, and, for every ${x \in \mathbb{R}^{2}}$ , ${1/(2\pi) \int_0^{2\pi} f(x + r(x)e^{it}) \, dt \le f(x)}$ , where ${r : \mathbb{R}^{2} \to (0,\infty)}$ is continuous, ${{\rm sup}_{x \in \mathbb{R}^{2}} (r(x) - |x|) < \infty},$ , and ${{\rm inf}_{x \in \mathbb{R}^{2}} (r(x)-|x|)=-\infty}$ , then f is constant. Moreover, it is shown that, assuming rc| · | + M on ${\mathbb{R}^d}$ , d ≤ 2, and taking averages on ${\{y \in \mathbb{R}^{d} : |y-x| \le r(x)\}}$ , such a result of Liouville type holds for supermedian functions if and only if cc 0, where c 0 = 1, if d = 2, whereas 2.50 < c 0 < 2.51, if d = 1.  相似文献   

2.
We consider a class of semilinear elliptic equations of the form $$ \label{eq:abs}-\Delta u(x,y,z)+a(x)W'(u(x,y,z))=0,\quad (x,y,z)\in\mathbb {R}^{3},$$ where ${a:\mathbb {R} \to \mathbb {R}}$ is a periodic, positive, even function and, in the simplest case, ${W : \mathbb {R} \to \mathbb {R}}$ is a double well even potential. Under non degeneracy conditions on the set of minimal solutions to the one dimensional heteroclinic problem $$-\ddot q(x)+a(x)W^{\prime}(q(x))=0,\ x\in\mathbb {R},\quad q(x)\to\pm1\,{\rm as}\, x\to \pm\infty,$$ we show, via variational methods the existence of infinitely many geometrically distinct solutions u of (0.1) verifying u(x, y, z) → ± 1 as x → ± ∞ uniformly with respect to ${(y, z) \in \mathbb {R}^{2}}$ and such that ${\partial_{y}u \not \equiv0, \partial_{z}u \not\equiv 0}$ in ${\mathbb {R}^{3}}$ .  相似文献   

3.
For any open orientable surface M and convex domain ${\Omega\subset \mathbb{C}^3,}$ there exist a Riemann surface N homeomorphic to M and a complete proper null curve F : NΩ. This result follows from a general existence theorem with many applications. Among them, the followings:
  • For any convex domain Ω in ${\mathbb{C}^2}$ there exist a Riemann surface N homeomorphic to M and a complete proper holomorphic immersion F : NΩ. Furthermore, if ${D \subset \mathbb{R}^2}$ is a convex domain and Ω is the solid right cylinder ${\{x \in \mathbb{C}^2 \,|\, \mbox{Re}(x) \in D\},}$ then F can be chosen so that Re(F) : ND is proper.
  • There exist a Riemann surface N homeomorphic to M and a complete bounded holomorphic null immersion ${F:N \to {\rm SL}(2, \mathbb{C}).}$
  • There exists a complete bounded CMC-1 immersion ${X:M \to \mathbb{H}^3.}$
  • For any convex domain ${\Omega \subset \mathbb{R}^3}$ there exists a complete proper minimal immersion (X j ) j=1,2,3 : MΩ with vanishing flux. Furthermore, if ${D \subset \mathbb{R}^2}$ is a convex domain and ${\Omega=\{(x_j)_{j=1,2,3} \in \mathbb{R}^3 \,|\, (x_1,x_2) \in D\},}$ then X can be chosen so that (X 1, X 2) : MD is proper.
  • Any of the above surfaces can be chosen with hyperbolic conformal structure.  相似文献   

    4.
    In this paper we consider the existence of homoclinic solutions for the following second order non-autonomous Hamiltonian system $${\ddot q}-L(t)q+\nabla W(t,q)=0, \quad\quad\quad\quad\quad\quad\quad (\rm HS)$$ where ${L\in C({\mathbb R},{\mathbb R}^{n^2})}$ is a symmetric and positive definite matrix for all ${t\in {\mathbb R}}$ , W(t, q)?=?a(t)U(q) with ${a\in C({\mathbb R},{\mathbb R}^+)}$ and ${U\in C^1({\mathbb R}^n,{\mathbb R})}$ . The novelty of this paper is that, assuming L is bounded from below in the sense that there is a constant M?>?0 such that (L(t)q, q)?≥ M |q|2 for all ${(t,q)\in {\mathbb R}\times {\mathbb R}^n}$ , we establish one new compact embedding theorem. Subsequently, supposing that U satisfies the global Ambrosetti–Rabinowitz condition, we obtain a new criterion to guarantee that (HS) has one nontrivial homoclinic solution using the Mountain Pass Theorem, moreover, if U is even, then (HS) has infinitely many distinct homoclinic solutions. Recent results from the literature are generalized and significantly improved.  相似文献   

    5.
    We consider bifunctions ${F : C\times C\rightarrow \mathbb{R}}$ where C is an arbitrary subset of a Banach space. We show that under weak assumptions, monotone bifunctions are locally bounded in the interior of their domain. As an immediate corollary, we obtain the corresponding property for monotone operators. Also, we show that in contrast to maximal monotone operators, monotone bifunctions (maximal or not maximal) can also be locally bounded at the boundary of their domain; in fact, this is always the case whenever C is a locally polyhedral subset of ${\mathbb{R}^{n}}$ and F(x, ·) is quasiconvex and lower semicontinuous.  相似文献   

    6.
    If $f\in L^{p}(\mathbb{R}^{d})$ is a bounded real valued continuous function which has a unique maximum or a unique minimum at a point $x_{0}\in \mathbb{R}^{d}$ and if the inverse image of the neighborhoods of f(x 0) shrinks regularly to x 0, then $\mathrm{ span }\{f^{m}(x-2^{-m}\varSigma_{i=1}^{d} j_{i} e_{i})\mid m\in\mathbb{N}, j_{i}\in\mathbb{Z}\}$ is a dense subset of $L^{p}(\mathbb{R}^{d}), 1\le p<\infty$ where f m (x)=f(x) m and {e i } is the natural basis of $\mathbb{R}^{d}$ . The result extends to all homogeneous groups, Riemannian symmetric spaces of noncompact type, Damek-Ricci spaces etc.  相似文献   

    7.
    A residual existence theorem for linear equations   总被引:1,自引:0,他引:1  
    A residual existence theorem for linear equations is proved: if ${A \in \mathbb{R}^{m\times n}}$ , ${b \in \mathbb{R}^{m}}$ and if X is a finite subset of ${\mathbb{R}^{n}}$ satisfying ${{\rm max}_{x \in X}p^T(Ax-b) \geq 0}$ for each ${p \in \mathbb{R}^{m}}$ , then the system of linear equations Axb has a solution in the convex hull of X. An application of this result to unique solvability of the absolute value equation Ax + B|x| = b is given.  相似文献   

    8.
    Let ${\Omega \subset \mathbb{R}^{N}}$ be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ${\partial\Omega}$ . We show that the solution to the linear first-order system $$\nabla \zeta = G\zeta, \, \, \zeta|_\Gamma = 0 \quad \quad \quad (1)$$ is unique if ${G \in \textsf{L}^{1}(\Omega; \mathbb{R}^{(N \times N) \times N})}$ and ${\zeta \in \textsf{W}^{1,1}(\Omega; \mathbb{R}^{N})}$ . As a consequence, we prove $$||| \cdot ||| : \textsf{C}_{o}^{\infty}(\Omega, \Gamma; \mathbb{R}^{3}) \rightarrow [0, \infty), \, \, u \mapsto \parallel {\rm sym}(\nabla uP^{-1})\parallel_{\textsf{L}^{2}(\Omega)}$$ to be a norm for ${P \in \textsf{L}^{\infty}(\Omega; \mathbb{R}^{3 \times 3})}$ with Curl ${P \in \textsf{L}^{p}(\Omega; \mathbb{R}^{3 \times 3})}$ , Curl ${P^{-1} \in \textsf{L}^{q}(\Omega; \mathbb{R}^{3 \times 3})}$ for some p, q > 1 with 1/p + 1/q = 1 as well as det ${P \geq c^+ > 0}$ . We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ${\Phi \in \textsf{H}^{1}(\Omega; \mathbb{R}^{3})}$ satisfy sym ${(\nabla\Phi^\top\nabla\Psi) = 0}$ for some ${\Psi \in \textsf{W}^{1,\infty}(\Omega; \mathbb{R}^{3}) \cap \textsf{H}^{2}(\Omega; \mathbb{R}^{3})}$ with det ${\nabla\Psi \geq c^+ > 0}$ . Then, there exist a constant translation vector ${a \in \mathbb{R}^{3}}$ and a constant skew-symmetric matrix ${A \in \mathfrak{so}(3)}$ , such that ${\Phi = A\Psi + a}$ .  相似文献   

    9.
    In this paper, we study the following diffusion system where $z:(u,v):\mathbb{R}\times\mathbb{R}^{N}\rightarrow\mathbb{R}^{2}$ , $V(x)\in C(\mathbb{R}^{N},\mathbb{R})$ is a general periodic function, g(t,x,v), f(t,x,u) are periodic in t,x and superquadratic in v,u at infinity. By using much more direct methods to prove all Cerami sequences for the energy functional are bounded and establish the existence of homoclinic orbits, which are ground state solutions for above system.  相似文献   

    10.
    Let \({K,M,N : \mathbb{R}^{2} \rightarrow \mathbb{R}}\) be translative functions. Then K is invariant with respect to the mapping \({(M,N) : \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}}\) if and only if the functions \({h = K(\cdot, 0), f = M(\cdot, 0), g = N(\cdot, 0)}\) satisfy the functional equation $$h(x) = h(f(x) - g(x)) + g(x),\,\, x\in \mathbb{R}.$$ If K, M, N are means, then h(0) =  f(0) =  g(0) = 0. The formal power solutions and analytic solutions of this functional equation, satisfying these initial conditions, are considered.  相似文献   

    11.
    Let L=?Δ+V is a Schrödinger operator on $\mathbb{R}^{d}$ , d≥3, V≥0. Let $H^{1}_{L}$ denote the Hardy space associated with L. We shall prove that there is an L-harmonic function w, 0<δw(x)≤C, such that the mapping $$H_L^1 \ni f\mapsto wf\in H^1\bigl(\mathbb{R}^d\bigr) $$ is an isomorphism from the Hardy space $H_{L}^{1}$ onto the classical Hardy space $H^{1}(\mathbb{R}^{d})$ if and only if $\Delta^{-1}V(x)=-c_{d}\int_{\mathbb{R}^{d}} |x-y|^{2-d} V(y) dy$ belongs to $L^{\infty}(\mathbb{R}^{d})$ .  相似文献   

    12.
    We study the Laplace equation in the half-space ${\mathbb{R}_{+}^{n}}$ with a nonlinear supercritical Robin boundary condition ${\frac{\partial u}{\partial\eta }+\lambda u=u\left\vert u\right\vert^{\rho-1}+f(x)}$ on ${\partial \mathbb{R}_{+}^{n}=\mathbb{R}^{n-1}}$ , where n ≥ 3 and λ ≥ 0. Existence of solutions ${u \in E_{pq}= \mathcal{D}^{1, p}(\mathbb{R}_{+}^{n}) \cap L^{q}(\mathbb{R}_{+}^{n})}$ is obtained by means of a fixed point argument for a small data $f \in {L^{d}(\mathbb{R}^{n-1})}$ . The indexes p, q are chosen for the norm ${\Vert\cdot\Vert_{E_{pq}}}$ to be invariant by scaling of the boundary problem. The solution u is positive whether f(x) > 0 a.e. ${x\in\mathbb{R}^{n-1}}$ . When f is radially symmetric, u is invariant under rotations around the axis {x n  = 0}. Moreover, in a certain L q -norm, we show that solutions depend continuously on the parameter λ ≥ 0.  相似文献   

    13.
    We discuss existence and non-existence of positive solutions for the following system of Hardy and Hénon type: $$\left\{\begin{array}{ll} {-\Delta v=|x|^{\alpha}u^{p},\,-\Delta u=|x|^{\beta}v^{q} \,\,{\rm in}\, \Omega,}\\ {u=v=0 \quad\quad\quad\quad\quad\quad\quad\quad\quad{\rm on}\, \partial \Omega}, \end{array}\right.$$ where ${\Omega\ni 0}$ is a bounded domain in ${\mathbb{R}^{N}}$ , N ≥ 3, p, q > 1, and α, β > ?N. We also study symmetry breaking for ground states when Ω is the unit ball in ${\mathbb{R}^{N}}$ .  相似文献   

    14.
    Let τ be a locally convex topology on the countable dimensional polynomial ${\mathbb{R}}$ -algebra ${\mathbb{R} [\underline{X}] := \mathbb{R} [X_1, \ldots, X_{n}]}$ . Let K be a closed subset of ${\mathbb{R} ^{n}}$ , and let ${M := M_{\{g_1, \ldots, g_s\}}}$ be a finitely generated quadratic module in ${\mathbb{R} [\underline{X}]}$ . We investigate the following question: When is the cone Psd(K) (of polynomials nonnegative on K) included in the closure of M? We give an interpretation of this inclusion with respect to representing continuous linear functionals by measures. We discuss several examples; we compute the closure of ${M = \sum \mathbb{R} [\underline{X}]^{2}}$ with respect to weighted norm-p topologies. We show that this closure coincides with the cone Psd(K) where K is a certain convex compact polyhedron.  相似文献   

    15.
    In this paper we are concerned with the existence of homoclinic solutions for the following second order non-autonomous Hamiltonian systems HS $$ \ddot{q}-L(t)q+W_{q}(t,q)=0, $$ where $W\in C^{1}(\mathbb{R}\times\mathbb{R}^{n},\mathbb{R})$ and $L\in C(\mathbb{R},\mathbb{R}^{n^{2}})$ is a symmetric and positive definite matrix for all $t\in\mathbb{R}$ . Assuming that the potential W satisfies some weaken global Ambrosetti-Rabinowitz conditions and L meets the coercive condition, we show that (HS) has at least one nontrivial homoclinic solution via using the Mountain Pass Theorem. Some recent results in the literature are generalized and significantly improved.  相似文献   

    16.
    For a bounded, open subset Ω of ${\mathbb{R}^{N}}$ with N > 2, and a measurable function a(x) satisfying 0 < α ≤ a(x) ≤ β, a.e. ${x \in \Omega}$ , we study the existence of positive solutions of the Euler–Lagrange equation associated to the non-differentiable functional $$\begin{array}{ll}J(v) = \frac{1}{2} \int \limits_{\Omega} [a(x)+|v|^{\gamma}]| \nabla v|^{2}- \frac{1}{p} \int \limits_{\Omega}(v_{+})^p,\end{array}$$ if γ > 0 and p > 1. Special emphasis is placed on the case ${2^{*} < p < \frac{2^{*}}{2} ( \gamma +2 )}$ .  相似文献   

    17.
    In this paper we classify the complete rotational special Weingarten surfaces in ${\mathbb{S}^2 \times \mathbb{R}}$ and ${\mathbb{H}^2 \times \mathbb{R}}$ ; i.e. rotational surfaces in ${\mathbb{S}^2 \times \mathbb{R}}$ and ${\mathbb{H}^2 \times \mathbb{R}}$ whose mean curvature H and extrinsic curvature K e satisfy H = f(H 2 ? K e ), for some function ${f \in \mathcal{C}^1([0,+\infty))}$ such that f(0) = 0 and 4x(f′(x))2 < 1 for any x ≥ 0. Furthermore we show the existence of non-complete examples of such surfaces.  相似文献   

    18.
    We find new necessary conditions for the estimate ${||u||_{L^{q}_{t} (\mathbb{R}; L^{r}_{x} (\mathbb{R}^{n}))} \lesssim\,||F||_{L^{{\tilde{q}}^{\prime}}_{t}(\mathbb{R};L^{{\tilde{r}}^{\prime}}_{x}(\mathbb{R}^{n}))}}$ , where uu(t, x) is the solution to the Cauchy problem associated with the free inhomogeneous Schrödinger equation with identically zero initial data and inhomogeneity FF(t, x).  相似文献   

    19.
    We study the following nonlinear elliptic system of Lane–Emden type $$\left\{\begin{array}{ll} -\Delta u = {\rm sgn}(v) |v| ^{p-1} \qquad \qquad \qquad \; {\rm in} \; \Omega , \\ -\Delta v = - \lambda {\rm sgn} (u)|u| \frac{1}{p-1} + f(x, u)\; \; {\rm in}\; \Omega , \\ u = v = 0 \qquad \qquad \qquad \quad \quad \;\;\;\;\; {\rm on}\; \partial \Omega , \end{array}\right.$$ where ${\lambda \in \mathbb{R}}$ . If ${\lambda \geq 0}$ and ${\Omega}$ is an unbounded cylinder, i.e., ${\Omega = \tilde \Omega \times \mathbb{R}^{N-m} \subset \mathbb{R}^{N}}$ , ${N - m \geq 2, m \geq 1}$ , existence and multiplicity results are proved by means of the Principle of Symmetric Criticality and some compact imbeddings in partially spherically symmetric spaces. We are able to state existence and multiplicity results also if ${\lambda \in \mathbb{R}}$ and ${\Omega}$ is a bounded domain in ${\mathbb{R}^{N}, N \geq 3}$ . In particular, a good finite dimensional decomposition of the Banach space in which we work is given.  相似文献   

    20.
    We prove a global implicit function theorem. In particular we show that any Lipschitz map ${f : \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}}$ (with n-dim. image) can be precomposed with a bi-Lipschitz map ${\bar{g} : \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{m}}$ such that ${f \circ \bar{g}}$ will satisfy, when we restrict to a large portion of the domain ${E \subset \mathbb{R}^{n} \times \mathbb{R}^{m}}$ , that ${f \circ \bar{g}}$ is bi-Lipschitz in the first coordinate, and constant in the second coordinate. Geometrically speaking, the map ${\bar{g}}$ distorts ${\mathbb{R}^{n+m}}$ in a controlled manner so that the fibers of f are straightened out. Furthermore, our results stay valid when the target space is replaced by any metric space. A main point is that our results are quantitative: the size of the set E on which behavior is good is a significant part of the discussion. Our estimates are motivated by examples such as Kaufman’s 1979 construction of a C 1 map from [0, 1]3 onto [0, 1]2 with rank ≤ 1 everywhere. On route we prove an extension theorem which is of independent interest. We show that for any Dn, any Lipschitz function ${f : [0,1]^{n} \rightarrow \mathbb{R}^{D}}$ gives rise to a large (in an appropriate sense) subset ${E \subset [0,1]^{n}}$ such that ${f|_E}$ is bi-Lipschitz and may be extended to a bi-Lipschitz function defined on all of ${\mathbb{R}^{n}}$ . This extends results of Jones and David, from 1988. As a simple corollary, we show that n-dimensional Ahlfors–David regular spaces lying in ${\mathbb{R}^{D}}$ having big pieces of bi-Lipschitz images also have big pieces of big pieces of Lipschitz graphs in ${\mathbb{R}^{D}}$ . This was previously known only for D ≥ 2n?+?1 by a result of David and Semmes.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号