首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Let Γ be a distance-regular graph of diameter d ≥ 3 with c 2 > 1. Let m be an integer with 1 ≤ md − 1. We consider the following conditions:
  (SC) m : For any pair of vertices at distance m there exists a strongly closed subgraph of diameter m containing them.
  (BB) m : Let (x, y, z) be a triple of vertices with ∂ Γ (x, y) = 1 and ∂ Γ (x, z) = ∂ Γ (y, z)  =  m. Then B(x, z) = B(y, z).
  (CA) m : Let (x, y, z) be a triple of vertices with ∂ Γ (x, y) = 2, ∂ Γ (x, z) = ∂ Γ (y, z) = m and |C(z, x) ∩ C(z, y)| ≥ 2. Then C(x, z) ∪ A(x, z) = C(y, z) ∪ A(y, z).
Suppose that the condition (SC) m holds. Then it has been known that the condition (BB) i holds for all i with 1 ≤ im. Similarly we can show that the condition (CA) i holds for all i with 1 ≤ im. In this paper we prove that if the conditions (BB) i and (CA) i hold for all i with 1 ≤ im, then the condition (SC) m holds. Applying this result we give a sufficient condition for the existence of a dual polar graph as a strongly closed subgraph in Γ.  相似文献   

2.
Let Γ denote a distance-regular graph with diameter d≥3. By a parallelogram of length 3, we mean a 4-tuple xyzw consisting of vertices of Γ such that (x,y)=(z,w)=1, (x,z)=3, and (x,w)=(y,w)=(y,z)=2, where denotes the path-length distance function. Assume that Γ has intersection numbers a 1=0 and a 2≠0. We prove that the following (i) and (ii) are equivalent. (i) Γ is Q-polynomial and contains no parallelograms of length 3; (ii) Γ has classical parameters (d,b,α,β) with b<−1. Furthermore, suppose that (i) and (ii) hold. We show that each of b(b+1)2(b+2)/c 2, (b−2)(b−1)b(b+1)/(2+2bc 2) is an integer and that c 2b(b+1). This upper bound for c 2 is optimal, since the Hermitian forms graph Her2(d) is a triangle-free distance-regular graph that satisfies c 2=b(b+1). Work partially supported by the National Science Council of Taiwan, R.O.C.  相似文献   

3.
Let Γ be a distance-regular graph of diameter d ≥ 3 with c 2 > 1. Let m be an integer with 1 ≤ m ≤ d − 1. We consider the following conditions:
  (SC) m : For any pair of vertices at distance m there exists a strongly closed subgraph of diameter m containing them.
  (BB) m : Let (x, y, z) be a triple of vertices with ∂Γ(x, y) = 1 and ∂Γ(x, z) = ∂Γ(y, z) = m. Then B(x, z) = B(y, z).
  (CA) m : Let (x, y, z) be a triple of vertices with and |C(z, x) ∩ C(z, y)| ≥ 2. Then C(x, z) ∪ A(x, z) = C(y, z) ∪ A(y, z).
In [12] we have shown that the condition (SC) m holds if and only if both of the conditions (BB) i and (CA) i hold for i = 1,...,m. In this paper we show that if a 1 = 0 < a 2 and the condition (BB) i holds for i = 1,...,m, then the condition (CA) i holds for i = 1,...,m. In particular, the condition (SC) m holds. Applying this result we prove that a distance-regular graph with classical parameters (d, b, α, β) such that c 2 > 1 and a 1 = 0 < a 2 satisfies the condition (SC) i for i = 1,...,d − 1. In particular, either (b, α, β) = (− 2, −3, −1 − (−2) d ) or holds.  相似文献   

4.
Many known distance-regular graphs have extra combinatorial regularities: One of them is t-homogeneity. A bipartite or almost bipartite distance-regular graph is 2-homogeneous if the number γ i  = |{x | ∂(u, x) = ∂(v, x) = 1 and ∂(w, x) = i − 1}| (i = 2, 3,..., d) depends only on i whenever ∂(u, v) = 2 and ∂(u, w) = ∂(v, w) = i. K. Nomura gave a complete classification of bipartite and almost bipartite 2-homogeneous distance-regular graphs. In this paper, we generalize Nomura’s results by classifying 2-homogeneous triangle-free distance-regular graphs. As an application, we show that if Γ is a distance-regular graph of diameter at least four such that all quadrangles are completely regular then Γ is isomorphic to a binary Hamming graph, the folded graph of a binary Hamming graph or the coset graph of the extended binary Golay code of valency 24. We also consider the case Γ is a parallelogram-free distance-regular graph. This research was partially supported by the Grant-in-Aid for Scientific Research (No.17540039), Japan Society of the Promotion of Science.  相似文献   

5.
 Let D be a semicomplete multipartite digraph, with partite sets V 1, V 2,…, V c, such that |V 1|≤|V 2|≤…≤|V c|. Define f(D)=|V(D)|−3|V c|+1 and . We define the irregularity i(D) of D to be max|d +(x)−d (y)| over all vertices x and y of D (possibly x=y). We define the local irregularity i l(D) of D to be max|d +(x)−d (x)| over all vertices x of D and we define the global irregularity of D to be i g(D)=max{d +(x),d (x) : xV(D)}−min{d +(y),d (y) : yV(D)}. In this paper we show that if i g(D)≤g(D) or if i l(D)≤min{f(D), g(D)} then D is Hamiltonian. We furthermore show how this implies a theorem which generalizes two results by Volkmann and solves a stated problem and a conjecture from [6]. Our result also gives support to the conjecture from [6] that all diregular c-partite tournaments (c≥4) are pancyclic, and it is used in [9], which proves this conjecture for all c≥5. Finally we show that our result in some sense is best possible, by giving an infinite class of non-Hamiltonian semicomplete multipartite digraphs, D, with i g(D)=i(D)=i l(D)=g(D)+?≤f(D)+1. Revised: September 17, 1998  相似文献   

6.
Let Γ=(X,E) denote a bipartite distance-regular graph with diameter D≥4, and fix a vertex x of Γ. The Terwilliger algebra T=T(x) is the subalgebra of Mat X(C) generated by A, E * 0, E * 1,…,E * D, where A denotes the adjacency matrix for Γ and E * i denotes the projection onto the i TH subconstituent of Γ with respect to x. An irreducible T-module W is said to be thin whenever dimE * i W≤1 for 0≤iDi. The endpoint of W is min{i|E * i W≠0}. We determine the structure of the (unique) irreducible T-module of endpoint 0 in terms of the intersection numbers of Γ. We show that up to isomorphism there is a unique irreducible T-module of endpoint 1 and it is thin. We determine its structure in terms of the intersection numbers of Γ. We determine the structure of each thin irreducible T-module W of endpoint 2 in terms of the intersection numbers of Γ and an additional real parameter ψ=ψ(W), which we refer to as the type of W. We now assume each irreducible T-module of endpoint 2 is thin and obtain the following two-fold result. First, we show that the intersection numbers of Γ are determined by the diameter D of Γ and the set of ordered pairs
where Φ2 denotes the set of distinct types of irreducible T-modules with endpoint 2, and where mult(ψ) denotes the multiplicity with which the module of type ψ appears in the standard module. Secondly, we show that the set of ordered pairs {(ψ,mult(ψ)) |ψ∈Φ2} is determined by the intersection numbers k, b 2, b 3 of Γ and the spectrum of the graph , where
and where ∂ denotes the distance function in Γ. Combining the above two results, we conclude that if every irreducible T-module of endpoint 2 is thin, then the intersection numbers of Γ are determined by the diameter D of Γ, the intersection numbers k, b 2, b 3 of Γ, and the spectrum of Γ2 2. Received: November 13, 1995 / Revised: March 31, 1997  相似文献   

7.
Let Γ=(X,R) be a distance-regular graph of diameter d. A parallelogram of length i is a 4-tuple xyzw consisting of vertices of Γ such that ?(x,y)=?(z,w)=1, ?(x,z)=i, and ?(x,w)=?(y,w)=?(y,z)=i?1. A subset Y of X is said to be a completely regular code if the numbers
$\pi_{i,j}=|\Gamma_{j}(x)\cap Y|\quad (i,j\in \{0,1,\ldots,d\})$
depend only on i=?(x,Y) and j. A subset Y of X is said to be strongly closed if
$\{x\mid \partial(u,x)\leq \partial(u,v),\partial(v,x)=1\}\subset Y,\mbox{ whenever }u,v\in Y.$
Hamming graphs and dual polar graphs have strongly closed completely regular codes. In this paper, we study parallelogram-free distance-regular graphs having strongly closed completely regular codes. Let Γ be a parallelogram-free distance-regular graph of diameter d≥4 such that every strongly closed subgraph of diameter two is completely regular. We show that Γ has a strongly closed subgraph of diameter d?1 isomorphic to a Hamming graph or a dual polar graph. Moreover if the covering radius of the strongly closed subgraph of diameter two is d?2, Γ itself is isomorphic to a Hamming graph or a dual polar graph. We also give an algebraic characterization of the case when the covering radius is d?2.
  相似文献   

8.
Tight Distance-Regular Graphs and the Q-Polynomial Property   总被引:1,自引:0,他引:1  
 Let Γ denote a distance-regular graph with diameter d≥3, and assume Γ is tight (in the sense of Jurišić, Koolen and Terwilliger). Let θ denote the second largest or smallest eigenvalue of Γ, and let σ01,…,σ d denote the associated cosine sequence. We obtain an inequality involving σ01,…,σ d for each integer i (1≤id−1), and we show equality for all i is closely related to Γ being Q-polynomial with respect to θ. We use this idea to investigate the Q-polynomial structures in tight distance-regular graphs. Received: January 30, 1998 Final version received: August 14, 1998  相似文献   

9.
In this paper, we consider a bipartite distance-regular graph Γ = (X, E) with diameter d ≥ 3. We investigate the local structure ofΓ , focusing on those vertices with distance at most 2 from a given vertex x. To do this, we consider a subalgebra R = R(x) ofMat0307a0x.gif X(C), where 0307a1x.gifX denotes the set of vertices in X at distance 2 from x. R is generated by matrices Ã, 0307a2x.gif J, and 0307a3x.gif D defined as follows. For all y, z 0307a4x.gif X, the (y,z )-entry of à is 1 if y, z are at distance 2, and 0 otherwise. The (y, z)-entry of 0307a5x.gif J equals 1, and the (y,z )-entry of 0307a6x.gif D equals the number of vertices of X adjacent to each ofx , y, and z. We show that R is commutative and semisimple, with dimension at least 2. We assume that R is one of 2, 3, or 4, and explore the combinatorial implications of this. We are motivated by the fact that if Γ has a Q-polynomial structure, then R ≤ 4.  相似文献   

10.
On path partitions of the divisor graph. Let D(x) be the graph with vertices {1, 2, ..., ⌊x⌋} whose edges come from the division relation, and let D(x, y) be the subgraph restricted to the integers with prime factors less than or equal to y. We give sufficient conditions on x and y for the graph D(x, y) to be Hamiltonian. We deduce an asymptotic formula for the number of paths in D(x) needed to partition the set of vertices {1, 2, ..., ⌊x⌋}.
  相似文献   

11.
If X is a geodesic metric space and x 1; x 2; x 3X, a geodesic triangle T = {x 1; x 2; x 3} is the union of the three geodesics [x 1 x 2], [x 2 x 3] and [x 3 x 1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. We denote by δ(X) the sharp hyperbolicity constant of X, i.e., δ(X) = inf {δ ≥ 0: X is δ-hyperbolic}. We obtain information about the hyperbolicity constant of cubic graphs (graphs with all of their vertices of degree 3), and prove that for any graph G with bounded degree there exists a cubic graph G* such that G is hyperbolic if and only if G* is hyperbolic. Moreover, we prove that for any cubic graph G with n vertices, we have δ(G) ≤ min {3n/16 + 1; n/4}. We characterize the cubic graphs G with δ(G) ≤ 1. Besides, we prove some inequalities involving the hyperbolicity constant and other parameters for cubic graphs.  相似文献   

12.
A new sufficient condition for Hamiltonian graphs   总被引:1,自引:0,他引:1  
The study of Hamiltonian graphs began with Dirac’s classic result in 1952. This was followed by that of Ore in 1960. In 1984 Fan generalized both these results with the following result: If G is a 2-connected graph of order n and max{d(u),d(v)}≥n/2 for each pair of vertices u and v with distance d(u,v)=2, then G is Hamiltonian. In 1991 Faudree–Gould–Jacobson–Lesnick proved that if G is a 2-connected graph and |N(u)∪N(v)|+δ(G)≥n for each pair of nonadjacent vertices u,vV(G), then G is Hamiltonian. This paper generalizes the above results when G is 3-connected. We show that if G is a 3-connected graph of order n and max{|N(x)∪N(y)|+d(u),|N(w)∪N(z)|+d(v)}≥n for every choice of vertices x,y,u,w,z,v such that d(x,y)=d(y,u)=d(w,z)=d(z,v)=d(u,v)=2 and where x,y and u are three distinct vertices and w,z and v are also three distinct vertices (and possibly |{x,y}∩{w,z}| is 1 or 2), then G is Hamiltonian.  相似文献   

13.
Suppose G is a connected, k-regular graph such that Spec(G)=Spec(Γ) where Γ is a distance-regular graph of diameter d with parameters a 1=a 2=⋯=a d−1=0 and a d>0; i.e., a generalized odd graph, we show that G must be distance-regular with the same intersection array as that of Γ in terms of the notion of Hoffman Polynomials. Furthermore, G is isomorphic to Γ if Γ is one of the odd polygon C 2d+1, the Odd graph O d+1, the folded (2d+1)-cube, the coset graph of binary Golay code (d=3), the Hoffman-Singleton graph (d=2), the Gewirtz graph (d=2), the Higman-Sims graph (d=2), or the second subconstituent of the Higman-Sims graph (d=2). Received: March 28, 1996 / Revised: October 20, 1997  相似文献   

14.
 Let G be a graph and W a subset of V(G). Let g,f:V(G)→Z be two integer-valued functions such that g(x)≤f(x) for all xV(G) and g(y)≡f(y) (mod 2) for all yW. Then a spanning subgraph F of G is called a partial parity (g,f)-factor with respect to W if g(x)≤deg F (x)≤f(x) for all xV(G) and deg F (y)≡f(y) (mod 2) for all yW. We obtain a criterion for a graph G to have a partial parity (g,f)-factor with respect to W. Furthermore, by making use of this criterion, we give some necessary and sufficient conditions for a graph G to have a subgraph which covers W and has a certain given property. Received: June 14, 1999?Final version received: August 21, 2000  相似文献   

15.
Suppose Γ is a group acting on a set X, written as (Γ,X). An r-labeling f: X→{1,2, ..., r} of X is called distinguishing for (Γ,X) if for all σ∈Γ,σ≠1, there exists an element xX such that f(x)≠f(x σ ). The distinguishing number d(Γ,X) of (Γ,X) is the minimum r for which there is a distinguishing r-labeling for (Γ,X). If Γ is the automorphism group of a graph G, then d(Γ,V (G)) is denoted by d(G), and is called the distinguishing number of the graph G. The distinguishing set of Γ-actions is defined to be D*(Γ)={d(Γ,X): Γ acts on X}, and the distinguishing set of Γ-graphs is defined to be D(Γ)={d(G): Aut(G)≅Γ}. This paper determines the distinguishing set of Γ-actions and the distinguishing set of Γ-graphs for almost simple groups Γ.  相似文献   

16.
Let Γ denote a bipartite distance-regular graph with vertex set X and diameter D≥3. Fix xX and let L (resp., R) denote the corresponding lowering (resp., raising) matrix. We show that each Q-polynomial structure for Γ yields a certain linear dependency among RL 2, LRL, L 2 R, L. Define a partial order ≤ on X as follows. For y,zX let yz whenever ?(x,y)+?(y,z)=?(x,z), where ? denotes path-length distance. We determine whether the above linear dependency gives this poset a uniform or strongly uniform structure. We show that except for one special case a uniform structure is attained, and except for three special cases a strongly uniform structure is attained.  相似文献   

17.
Let G be a connected graph. We denote by σ(G,x) and δ(G) respectively the σ-polynomial and the edge-density of G, where . If σ(G,x) has at least an unreal root, then G is said to be a σ-unreal graph. Let δ(n) be the minimum edgedensity over all n vertices graphs with σ-unreal roots. In this paper, by using the theory of adjoint polynomials, a negative answer to a problem posed by Brenti et al. is given and the following results are obtained: For any positive integer a and rational number 0≤c≤1, there exists at least a graph sequence {G i}1≤ia such that G i is σ-unreal and δ(G i)→c as n→∞ for all 1 ≤ia, and moreover, δ(n)→0 as n→∞. Supported by the National Natural Science Foundation of China (10061003) and the Science Foundation of the State Education Ministry of China.  相似文献   

18.
For a finite poset P = (V, ≤ ), let _s(P){\cal B}_s(P) consist of all triples (x,y,z) ∈ V 3 such that either x < y < z or z < y < x. Similarly, for every finite, simple, and undirected graph G = (V,E), let Bs(G){\cal B}_s(G) consist of all triples (x,y,z) ∈ V 3 such that y is an internal vertex on an induced path in G between x and z. The ternary relations Bs(P){\cal B}_s(P) and Bs(G){\cal B}_s(G) are well-known examples of so-called strict betweennesses. We characterize the pairs (P,G) of posets P and graphs G on the same ground set V which induce the same strict betweenness relation Bs(P)=Bs(G){\cal B}_s(P)={\cal B}_s(G).  相似文献   

19.
Let Γ be a Delsarte set graph with an intersection number c 2 (i.e., a distance-regular graph with a set ${\mathcal{C}}Let Γ be a Delsarte set graph with an intersection number c 2 (i.e., a distance-regular graph with a set C{\mathcal{C}} of Delsarte cliques such that each edge lies in a positive constant number nC{n_{\mathcal{C}}} of Delsarte cliques in C{\mathcal{C}}). We showed in Bang et al. (J Combin 28:501–506, 2007) that if ψ 1 > 1 then c 2 ≥ 2 ψ 1 where y1:=|G1(x)?C |{\psi_1:=|\Gamma_1(x)\cap C |} for x ? V(G){x\in V(\Gamma)} and C a Delsarte clique satisfying d(x, C) = 1. In this paper, we classify Γ with the case c 2 = 2ψ 1 > 2. As a consequence of this result, we show that if c 2 ≤ 5 and ψ 1 > 1 then Γ is either a Johnson graph or a folded Johnson graph [`(J)](4s,2s){\overline{J}(4s,2s)} with s ≥ 3.  相似文献   

20.
拟圆周的两个几何性质   总被引:3,自引:0,他引:3  
§1 IntroductionLetΓbe a Jordan curve of R2 and f∶R2→R2 be a k-quasiconformal mapping,where1≤k<+∞.Γis called a quasicirlce ifΓis the image of the unit circle B2 under f.It is well-known that quasicircles play a very important role in quasiconformalmapping theory,complex dynamics,Fuchsian groups,Teichmuller space theory and lowdimensional topology,( see[1—5] etc.)In1 963 ,Ahlfors obtained the three-point property of quasidisks[6] .Later,Gehring[7] ,Osgood[8] ,Krzyz[9] ,Ch…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号