首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work studies the adsorption of Me-1-hydroxiethane-(1,1-diphosphonic acid) (HEDP) complex onto alumina in the pH range from 5.0 to 9.5. The extent of HEDP adsorption is not significatively affected by the presence of Me(II), while, HEDP has an interesting effect on Me(II) adsorption. At high surface covering, Cu(II) adsorption is enhanced at low pH reaching a maximum of 57% at pH nearly 6, however, at pH>6 a decrease about 20% in the amount of Cu(II) adsorbed takes place by the presence of HEDP. The model predicts a ternary surface complex (AlLCu(-)) to justify the increase of Cu(II) adsorbed at lower pH. At the lower pH and at high Zn(II) concentration the presence of equimolar concentration of HEDP also causes a discernible increase in the amount of Zn(II) adsorbed. At pH 5, the percentage of Zn(II) complexed with HEDP increased from negligible to 40% as the HEDP concentration increased. However, in this case the HEDP does not have a suppressor effect on the Zn(II) adsorption at the higher pH. Again, the presence of anionic-type complexation is here postulated to reach a good fit with the experimental results. The effect of HEDP over Zn(II) adsorption becomes less pronounced with the excess of surface sites. Cd(II)-HEDP solution complexes are weaker than those corresponding to Cu(II) and Zn(II), so competitive effects between surface and solution are much less significant in comparison to Cu(II)-HEDP and Zn(II)-HEDP alumina systems. So, the effect of HEDP on the Cd adsorption at low concentration and low pH is more stressed than in the case of Cu(II) and Zn(II). Overall, results indicate that the presence of HEDP in the aquatic systems could have a significant impact on the mobility and distribution of Cu(II), Zn(II) and Cd(II) in the environment.  相似文献   

2.
First-principle density functional theory (DFT) calculations on the electronic state and structure of a [Co2+]2/gamma-Al2O3 model catalyst have been performed in relation to catalysis for unique NO-CO reactions on a Co2+ ensemble/gamma-Al2O3 catalyst. The DFT calculations reveal that a bulk structure of gamma-Al2O3 is energetically most favorable when aluminum vacancies are evenly dispersed at octahedral sites, and that the (110) plane is exposed as a top-most layer by its neutrality. Two Co2+ ions on the (110) surface are supported adjacently to each other in a tetrahedral symmetry. The calculations also demonstrate that the vacant d orbitals of the two Co2+ ions are directed toward each other, which brings about an adsorbate-adsorbate interaction between two molecules which adsorb on each of the Co2+ ions. This may be an origin of the unique aspect of Co2+ ensemble/gamma-Al2O3 catalysis.  相似文献   

3.
Ag on gamma-alumina is a promising catalyst for hydrocarbon selective catalytic reduction in lean-burn gasoline and diesel engines for transportation applications. Although much is known about the mechanism of NOx reduction and the various intermediates, little agreement exists on the nature of the active silver species. In the present work, aberration-corrected STEM has provided new information about the nature of Ag on alumina both as impregnated and following treatments at various temperatures with exposure to simulated exhaust gas. Ex situ techniques have provided new insights into the evolution of Ag on alumina following exposure to temperature and simulated exhaust gas.  相似文献   

4.
Cu-Pd/Al2O3 bimetallic catalysts have been characterized by XRD, TEM, and EDX techniques. The surface structure has been investigated by FT-IR spectroscopy of low-temperature adsorbed CO in the reduced and in the oxidized state. Evidence has been provided of the formation of Cu-Pd alloy nanoparticles, both of the alpha-phase (disordered fcc) and of the beta-phase (ordered CsCl-type). IR spectra suggest that Cu likely decorates the edges while Pd mostly stays at the main faces. Part of copper disperses as Cu+ on the support even after reduction. The presence of copper seems to modify strongly the sate of oxidized Pd centers in oxidized high-Pd content materials. The redox chemistry of the system, where Pd is reduced more easily than Cu, appears to be very complex.  相似文献   

5.
An alumina-supported Mo2C catalyst is found to be as active as a conventionally used Ir/gamma-Al2O3 catalyst for catalytic decomposition of hydrazine tested in a monopropellant thruster.  相似文献   

6.
The growing demand for high-quality transportation fuels requires their cost-effective production by hydrodesulfurization of crude oils using heterogeneous catalysts. To study the three-dimensional (3D) structure of such a commercial, sulfided Ni-Mo/gamma-Al2O3 catalyst, electron tomography was applied. The MoS2 particles form an interconnected complex structure within the mesopores of the alumina support. Spatial organization, morphology, and orientation of the MoS2 particles in the pores were resolved with sufficient accuracy to display the 6-A-spaced MoS2 crystal planes. The proximity of the MoS2 edge planes and more loosely interacting MoS2 basal planes to the alumina support showed the presence of pores smaller than 3 nm, which was confirmed by physisorption experiments. The actual shape of the MoS2 particles cannot be described by simple models as derived from studies on model catalysts. Electron tomography is a unique tool to study the actual 3D structure of complex industrial catalysts with sub-nanometer resolution.  相似文献   

7.
Mesostructured forms of gamma-Al(2)O(3)   总被引:1,自引:0,他引:1  
gamma-Al2O3 is one of the most extensively utilized metal oxides in heterogeneous catalysis. Conventional forms of this oxide typically exhibit a surface area and pore volume less than 250 m2/g and 0.5 cm3/g, respectively. Previous efforts to prepare mesostructured forms of alumina resulted only in structurally unstable derivatives with amorphous framework walls. The present work reports mesostructured aluminas with walls made of gamma-Al2O3, denoted MSU-gamma. These materials are structurally stable and provide surface areas and pore volumes up to 370 m2/g and 1.5 cm3/g, respectively. The key to obtaining these structures is the formation of a mesostructured surfactant/boehmite precursor, denoted MSU-S/B, assembled through the hydrolysis of an aluminum cation, oligomer, or molecule in the presence of a nonionic surfactant. Mesostructured, gamma-aluminas offer the possibility of improving the catalytic efficiency of many heterogeneous catalytic processes, such as petroleum refining, petrochemical processing, and automobile exhaust control.  相似文献   

8.
Insufficient understanding of the interactions of reactive phases (e.g., Fe and Al oxides) with minerals, other reactive phases and sorbing species has made predicting and modeling metal sorption on natural sediment surfaces difficult. This work develops a method to create mixed Fe/Al planar oxide surfaces by coating well-characterized planar gamma-Al2O3 with ferric iron. The objective is to closely control the Fe/Al ratio as well as the distribution of Fe on the planar surface. Effects of starting Fe(III) concentration, reaction time and number of coating sequences were examined using XPS and ToF-SIMS. No observable trend was seen in Fe/Al ratios by varying the starting Fe(III) concentration or reaction time. For both 4- and 14-day reactions, lower concentrations of Fe(III) produced oxide phases with a homogeneous distribution of Fe at the surface as detected by ToF-SIMS. ToF-SIMS Fe elemental maps of the oxide phases resulting from the highest Fe(III) concentration showed areas of localized Fe deposition. A sequential coating procedure allowed for a closer control of the concentration and spatial distribution of Fe(III) in the resulting oxide phase. This work provides methodology that can be used to create Fe/Al oxide phases whose Fe/Al content can be controlled for use in subsequent sorption studies to better understand the effects of mixed phase oxides on metal ion uptake.  相似文献   

9.
Ferrocyanide and ferricyanide ions have strong coagulation ability in a natural water system due to their high valences. Studies with aluminum oxide turbid waters showed significant differences in coagulation between simple ions (Cl-, SO2-4, Fe(CN)3-6, Fe(CN)4-6) and other species (H2PO-4) that interact chemically with the oxide surface. The evidence suggested that the adsorption of ferrocyanide and ferricyanide on aluminum oxide surface is an outer-sphere reaction. The linear relationship between the logarithm of the significant coagulation concentration and Schultz-Hardy ratios indicated that the coagulation obeyed the DLVO rule. Therefore, it is concluded that the coagulation of aluminum oxide by ferrocyanide and ferricyanide is essentially caused by compression of the electric double layer rather than by charge neutralization. Copyright 1999 Academic Press.  相似文献   

10.
Detailed structure of Br?nsted acid sites on the surface of SO3/Al2O3 catalyst has been proposed based on 1H/27Al TRAPDOR NMR results and the acidity of the catalyst has also been characterized by NMR probe molecules.  相似文献   

11.
The coadsorption of CO and triethylenediamine (TEDA) (also called 1,4-diazabicyclo[2.2.2]octane, DABCO) on a high-area gamma-Al2O3 surface has been investigated with use of transmission FTIR spectroscopy. It has been found that TEDA binds more strongly to both Lewis acid sites and to Br?nsted Al-OH sites than does CO. Competition experiments indicate that TEDA displaces CO to less strong binding sites. Evidence for weak CO...TEDA interactions is found in which small nu(CO) redshifts are produced. Comparison between different amines such as triethylenemonoamine (TEMA) (also called 1-azabicyclo[2.2.2]octane, ABCO), trimethylamine (TMA), and ammonia indicates that the nu(CO) redshift increases with increasing amine polarizability, indicating that the redshift is mainly due to dipole image damping effects on the CO oscillator frequency. The direct bonding between the exposed N lone pair electrons of the TEDA molecule and CO does not occur. First principles theoretical studies have characterized the bonding of CO with gamma-Al2O3 Lewis acid sites of various types as well as TEDA bonding to both Lewis acid sites and to Al-OH groups. The theoretical studies also indicate that strong bonding of adsorbed CO with TEDA molecules does not occur, and that the observed decrease in the binding energy of CO when coadsorbed with TEDA on gamma-Al2O3 is expected.  相似文献   

12.
13.
Adsorption and protonation of CO2 on the (110) and (100) surfaces of gamma-Al2O3 have been studied using density functional theory slab calculations. On the dry (110) and (100) surfaces, the O-Al bridge sites were found to be energetically favorable for CO2 adsorption. The adsorbed CO2 was bound in a bidentate configuration across the O-Al bridge sites, forming a carbonate species. The strongest binding with an adsorption energy of 0.80 eV occurs at the O3c-Al5c bridge site of the (100) surface. Dissociation of water across the O-Al bridge sites resulted in partially hydroxylated surfaces, and the dissociation is energetically favorable on both surfaces. Water dissociation on the (110) surface has a barrier of 0.42 eV, but the same process on the (100) surface has no barrier with respect to the isolated water molecule. On the partially hydroxylated gamma-Al2O3 surfaces, a bicarbonate species was formed by protonating the carbonate species with the protons from neighboring hydroxyl groups. The energy difference between the bicarbonate species and the coadsorbed bidentate carbonate species and hydroxyls is only 0.04 eV on the (110) surface, but the difference reaches 0.97 eV on the (100) surface. The activation barrier for forming the bicarbonate species on the (100) surface, 0.42 eV, is also lower than that on the (110) surface (0.53 eV).  相似文献   

14.
B3LYP/LANL2DZ and B3LYP/6-31G(d)-restricted and -unrestricted calculations are employed to calculate energies and adsorption forms of formaldehyde adsorbed on planar and on tetrahedral Pd4 clusters and on a Pd4 cluster supported on Al10O15. Formaldehyde adsorbs on planar Pd4 in the eta(2)(C,O)-di-sigma adsorption mode, while on tetrahedral Pd4, it adsorbs in the eta(2)(C,O)-pi adsorption mode. The adsorption energy on planar Pd4 is -21.4 kcal x mol(-1), whereas for the tetrahedral Pd4 cluster, the adsorption energy is -13.2 kcal x mol(-1). The latter value is close to experimental findings (-12 to -14 kcal x mol(-1)). Adsorption of formaldehyde on Pd4 supported on an Al10O15 cluster leads essentially to the same result as that found for adsorption on the tetrahedral Pd4 cluster. Charge density analysis for the interaction between formaldehyde and the Pd4 clusters indicates strong backdonation in the eta(2) adsorption mode, leading to positive charge on the Pd4 cluster. NBO analysis shows that the highly coordinated octahedral aluminum atoms of Al10O15 donate electron density to the supported Pd4 cluster, while tetrahedral aluminum atoms with lower coordination number have acidic nature and therefore act as electron acceptors.  相似文献   

15.
Exposure of NO(2)-saturated BaO/gamma-Al(2)O(3) NO(x) storage materials to H(2)O vapour results in the conversion of surface nitrates to Ba(NO(3))(2) crystallites, causing dramatic morphological changes in the Ba-containing phase, demonstrating a role for water in affecting the NO(x) storage/reduction properties of these materials.  相似文献   

16.
The effect of sodium hydroxide on the-liquid phase hydrodechlorination (LPHDC) of polychlorinated dibenzo- p-dioxins/polychlorinated dibenzofurans (PCDD/Fs) over 2% Pd/gamma-Al 2O 3 was evaluated. Reactions were carried out using 2-propanol both as a hydrogen donor and as a solvent. Fresh and used catalyst samples were characterized by BET, hydrogen chemisorption, TEM/EDS, XPS, and TPR. When the reaction mixture contained no NaOH, active-phase leaching and Pd-C formation were observed even after 10 min of reaction. Therefore, sodium hydroxide appears to be required to maintain surface metal clusters on the support and avoid binding of carbon species to the active metal. On the other hand, excess NaOH in the reaction mixture led to deposition of organic and inorganic solid residues on the catalyst surface, blocking the active sites. Under the conditions of this study, the addition of 30 mg of NaOH maintained the basicity of the system and diminished deposition of solid residues on the catalyst samples, and almost 100% detoxification was reached after a 3 h reaction.  相似文献   

17.
Hierarchically ordered porous alumina was prepared via a facile immersion-fuming-calcination process using Pueraria lobata as template. The as-prepared alumina inherited nearly all morphological features of the template, as shown by SEM observations. It also contains abundant mesopores based on nitrogen adsorption-desorption measurements. The crystalline phase of the as-prepared alumina was ascertained to be gamma-alumina by analyzing its XRD pattern. Pt nanoparticles were in situ synthesized in the gamma-alumina matrix and annealed at different temperatures in N(2) atmosphere. TEM observations showed that Pt nanoparticles supported by the as-prepared alumina have significantly high thermal stability.  相似文献   

18.
The specific adsorption of radiolabeled sulfate and phosphate ions from perchlorate supporting electrolyte onto nano-AlOOH and nano-Fe(2)O(3) powder has been investigated. The pH dependence of the adsorption of anions onto nanopowders was compared with that of the same ions onto gamma-Al(2)O(3) and hematite. It was demonstrated that the character of the pH dependence of the adsorption is very similar in the comparable cases. It was found, however, that in contrast to the behavior of gamma-Al(2)O(3), nano-AlOOH dissolves at a significant rate at low pH values (pH<2). Thus the study of the pH dependence of the anion adsorption encounters difficulties at these pH values. Disregarding this fact, it can be concluded that no special effects can be observed in the anion adsorption onto the nano-oxides studied.  相似文献   

19.
Using recent well-defined models of gamma-Al2O3 surfaces, we study the interaction of single Pd atoms with gamma-Al2O3 surfaces corresponding to realistic pretreatment conditions by means of density functional theory periodic calculations. For relevant hydroxylation states of the surface, we determine potential energy surfaces (PES) that depict the relationship between structure and interaction at the metal-oxide interface. This approach enables the determination of the low-energy diffusion paths of the adsorbed Pd species. We applied classical transition-state theory to derive the temperature-dependent hopping rate of Pd on gamma-Al2O3 surfaces. Our work provides new insight into the chemisorption and diffusion process of single Pd atoms on alumina and show that the binding energy and hopping rate of Pd atoms decrease as the surface OH coverage increases. These results offer new highlights on Pd cluster formation at the initial nucleation steps on gamma-Al2O3 surfaces.  相似文献   

20.
Mesostructured gamma-Al(2)O(3) with a lathlike framework morphology   总被引:1,自引:0,他引:1  
A novel three-step assembly pathway is reported for the formation of a mesostructured alumina with framework pore walls made of crystalline, lathlike gamma-Al(2)O(3) nanoparticles. In the initial supramolecular assembly step of the pathway a mesostructured alumina with a wormhole framework morphology and amorphous pore walls is assembled through the hydrolysis of Al(13) oligocations and hydrated aluminum cations in the presence of a nonionic diblock or triblock poly(ethylene oxide) surfactant as the structure-directing porogen. The walls of the initial mesostructure are then transformed in a second hydrolysis step at a higher temperature to a surfactant-boehmite mesophase, denoted MSU-S/B, with a lathlike framework made of boehmite nanoparticles. A final thermal reaction step topochemically converts the intermediate boehmitic mesophase to a mesostructure with crystalline gamma-Al(2)O(3) pore walls, denoted MSU-gamma, with retention of the lathlike framework morphology. The boehmitic MSU-S/B intermediates formed from the chloride salts of aluminum incorporate chloride anions into the mesostructure. Chloride ion incorporation tends to disorder the nanoparticle assembly process, leading to a broadening of the slit-shaped framework pores in the final MSU-gamma phases and to the introduction of intra- and interparticle textural mesopores. However, the well-ordered MSU-gamma phases made from aluminum nitrate as the preferred aluminum reagent exhibit narrow framework pore size distributions and average pore sizes that are independent of the surfactant size and packing parameter, in accord with a lathlike framework assembled from nanoparticles of regular size and connectivity. The high surface areas ( approximately 300-350 m(2)/g) and pore volumes ( approximately 0.45-0.75 cm(3)/g) provided by these mesostructured forms of gamma-Al(2)O(3) should be useful in materials and catalytic applications where the availability of surface Lewis acid sites and the dispersion of supported metal centers govern reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号