共查询到16条相似文献,搜索用时 46 毫秒
1.
为了解决视频传输中整帧图像丢失的误差扩散问题,提出了一种基于多参考帧运动矢量外推的整帧丢失错误掩盖算法.通过对多个参考帧的运动矢量外推得到丢失块的候选运动矢量集|采用多参考帧边界匹配准则进行丢失帧和其后续帧的误差估计,并选择丢失块的最优运动矢量|最后采用自适应的重叠块运动补偿方法重建丢失帧.实验结果表明,该算法在恢复整帧图像的同时,有效地降低了视频序列中整帧图像丢失的误差扩散影响,与已有算法比较,该算法恢复的视频序列平均峰值信噪比提高了0.5~1 dB,具有更好的错误掩盖效果. 相似文献
2.
提出一种基于自适应补偿的快速帧速率上转换算法.算法在塔型结构数据上进行运动估计并利用相邻块运动矢量对上层传递矢量进行修正,减少计算量的同时获得了平滑的运动矢量场.在匹配搜索过程中采用动态调整搜索窗策略,避免了过搜索和搜索不足的问题.运动补偿克服了传统的补偿算法仅采用一种插值方法的不足,根据运动矢量的可靠性分别采用了3种不同的插值方法.为了减少块边缘的失真,采用了重叠块运动补偿的插值方法.在遮挡区域,设计了加权多候选运动矢量插值方法,对前后两帧补偿结果分别赋予不同的权值以减少失真.实验结果表明,该算法与传统算法相比不仅可以大幅度降低计算量,且插值图像的质量有所提高. 相似文献
3.
为了解决视频流在不可靠网络上的错误传播问题,使用基于帧的多描述视频编码,提出采用预测的预处理和后处理过程方案,实现了描述间的冗余插入|实现了几种不同复杂度,不同性能的错误掩盖算法以适应多样化的网络传输环境.仿真实验结果表明,这种编码系统能有效控制视频流的错误传播,并且编码后的数据流更能适应各种网络传输状况. 相似文献
4.
5.
为了解决量子信令的最佳帧长问题,本文提出了一种基于保真度的量子信令最佳帧长的算法.根据量子信令收发模型,定义了一个由若干量子态组成的量子信令的联合保真度,并通过计算链路的有效利用率而得出最佳帧长的算法.仿真结果与理论分析完全相符,从而表明本文提出的最佳帧长算法稳定、易行,可以应用到复杂多变的实际环境中. 相似文献
6.
为了准确利用远场得到近场相位分布,提出了多帧相位反演算法.这是一种利用多个远场以实现传统Gerchberg-Saxton(G-S)算法的相位反演方法,其中的新远场是通过叠加已知像差到待测像差后产生的.在此算法的基础上,提出以变形镜面形来实现反演的方法,并通过数值仿真和实验验证了这种基于变形镜面形的多帧G-S相位反演方法的可行性.仿真结果同时还表明,采用4个变形镜面形产生相应的远场,平均仪需50次的迭代便可反演出不同D/r0数值的大气像差,这些反演的像差与其对应待测像差之间的差别的均方根值平均小于0.005 λ. 相似文献
7.
8.
基于时间序列预测的电子稳像算法研究 总被引:1,自引:1,他引:0
块匹配电子稳像算法是一种稳定性好、准确度高的电子稳像算法.块匹配算法在目标区域中从起始点到匹配点进行搜索时,需要对图像块进行反复匹配,计算量大、实时性差成为限制其应用的主要问题.本文从缩小块匹配算法搜索范围的思想出发,提出了一种利用时间序列预测来确定最优搜索起始点的电子稳像算法.根据图像序列全局运动矢量的内部统计特性,选择合适的时间序列模型;采用AIC准则和Durbin-Levinson递推算法估计模型的阶次和参量,并通过残差检验对模型进行检验和更新.利用建立的时间序列模型和历史数据对当前时刻全局运动矢量进行最优预测,并将其作为搜索起点来进行下一步精确搜索.实验结果证明,时间序列预测方法有效缩小了块匹配算法的搜索范围,使计算速度得到较大幅度的提高,并可直接推广到其它电子稳像算法中. 相似文献
9.
10.
11.
12.
一种补偿平移与旋转运动的快速电子稳像算法 总被引:3,自引:1,他引:2
针对视频图像序列的非稳特性,研究了电子稳像算法中灰度投影算法和块匹配算法各自的不足之处,提出了一种快速补偿视频图像序列间平移及旋转运动的稳定成像算法.该算法先采用灰度投影算法估计并补偿视频图像序列间的平移运动,再利用拉普拉斯变换在靠近图像的边缘区域选取几个具有明显特征的小块,运用块匹配算法进行匹配,计算并补偿其旋转运动量,以得到稳定的视频图像序列.通过理论分析和实验验证,表明这种稳像算法具有速度快、准确度高的特点. 相似文献
13.
14.
Basma Touil Adrian Basarab Philippe Delachartre Olivier Bernard Denis Friboulet 《Ultrasonics》2010,50(3):373-386
This paper focuses on motion tracking in echocardiographic ultrasound images. The difficulty of this task is related to the fact that echographic image formation induces decorrelation between the underlying motion of tissue and the observed speckle motion. Since Meunier’s seminal work, this phenomenon has been investigated in many simulation studies as part of speckle tracking or optical flow-based motion estimation techniques. Most of these studies modeled image formation using a linear convolution approach, where the system point-spread function (PSF) was spatially invariant and the probe geometry was linear. While these assumptions are valid over a small spatial area, they constitute an oversimplification when a complete image is considered. Indeed, echocardiographic acquisition geometry relies on sectorial probes and the system PSF is not perfectly invariant, even if dynamic focusing is performed.This study investigated the influence of sectorial geometry and spatially varying PSF on speckle tracking. This was done by simulating a typical 64 elements, cardiac probe operating at 3.5 MHz frequency, using the simulation software Field II. This simulation first allowed quantification of the decorrelation induced by the system between two images when simple motion such as translation or incompressible deformation was applied. We then quantified the influence of decorrelation on speckle tracking accuracy using a conventional block matching (BM) algorithm and a bilinear deformable block matching (BDBM) algorithm. In echocardiography, motion estimation is usually performed on reconstructed images where the initial sectorial (i.e., polar) data are interpolated on a cartesian grid. We therefore studied the influence of sectorial acquisition geometry, by performing block matching on cartesian and polar data.Simulation results show that decorrelation is spatially variant and depends on the position of the region where motion takes place relative to the probe. Previous studies did not consider translation in their experiments, since their simulation model (spatially invariant PSF and linear probe) yields by definition no decorrelation. On the opposite, our realistic simulation settings (i.e., sectorial probe and realistic beamforming) show that translation yields decorrelation, particularly when translation is large (above 6 mm) and when the moving regions is located close to the probe (distance to probe less than 50 mm).The tracking accuracy study shows that tracking errors are larger for the usual cartesian data, whatever the estimation algorithm, indicating that speckle tracking is more reliable when based on the unconverted polar data: for axial translations in the range 0-10 mm, the maximum error associated to conventional block matching (BM) is 4.2 mm when using cartesian data and 1.8 mm for polar data. The corresponding errors are 1.8 mm (cartesian data) and 0.4 mm (polar data) for an applied deformation in the range 0-10%. We also show that accuracy is improved by using the bilinear deformable block matching (BDBM) algorithm. For translation, the maximum error associated to the bilinear deformable block matching is indeed 3.6 mm (cartesian data) and 1.2 mm (polar data). Regarding deformation, the error is 0.7 mm (cartesian data) and 0.3 mm (polar data). These figures also indicates that the larger improvement brought by the bilinear deformable block matching over standard block matching logically takes place when deformation on cartesian data is considered (the error drops from 1.8 to 0.7 mm is this case).We give a preliminary evaluation of this framework on a cardiac sequence acquired with a Toshiba Powervision 6000 imaging system using a probe operating at 3.25 MHz. As ground truth reference motion is not available in this case, motion estimation performance was evaluated by comparing a reference image (i.e., the first image of the sequence) and the subsequent images after motion compensation has been applied. The comparison was quantified by computing the normalized correlation between the reference and the motion-compensated images. The obtained results are consistent with the simulation data: correlation is smaller for cartesian data, whatever the estimation algorithm. The correlation associated to the conventional block matching (BM) is in the range 0.45-0.02 when using cartesian data and in the range 0.65-0.2 for polar data. The corresponding correlation ranges for the bilinear deformable block matching are 0.98-0.2 and 0.98-0.55. In the same way these figures indicate that the bilinear deformable block matching yield a larger improvement when cartesian data are considered (correlation range increases from 0.45-0.02 to 0.98-0.2 in this case). 相似文献
15.
16.
一种基于特征跟踪的视频序列稳像算法 总被引:1,自引:1,他引:1
提出一种基于特征跟踪的视频序列稳像算法.该算法从视频序列的参考帧中提取出一组角点特征,然后在后续帧中基于模糊Kalman滤波进行特征窗跟踪,通过比较各帧图像中特征窗间的对应关系计算出补偿摄像机运动所必需的参数,使用这些参数将后续帧向参考帧对准,从而得到稳定的视频序列.实验结果表明该算法稳像效果好,运算复杂度低,且具有较强的鲁棒性. 相似文献