首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Panissod  P. 《Hyperfine Interactions》1985,25(1-4):607-636
Through hyperfine interactions the electronic structure of amorphous materials can be investigated by NMR. Furthermore, the local character of these interactions makes them adequate to study the local environment and the local symmetry around the probe nuclei through the measurement of hyperfine fields and electric field gradients. We review recent NMR studies of amorphous metals from the following two points of view: (1) Electronic structure: Knight shifts and spin relaxation times in paramagnetic materials and hyperfine fields in ferromagnetic materials. (2) Local amorphous structure: topological and chemical short-range order. Emphasis will be given to the comparisons between amorphous materials and corresponding crystalline materials.  相似文献   

2.
We perform the extended x-ray absorption fine structure(EXAFS) measurement to investigate the local structure of amorphous alloys Ce_xRu__(100-x)(x = 9,43 and 80).The interatomic distances of the nearest Ru-Ce and Ru-Ru pairs derived from EXAFS are fully independent of Ce concentration.On the other hand the distance between neighboring Ce atoms increases sharply with the Ce content,which is exactly proportional to the Ce effective magnetic moment.We discuss the relation between the atomic distance and the effective magnetic moment from the point of view of the magneto-volume effect.  相似文献   

3.
NMR methods are widely used to probe the structure and fluid dynamics of porous materials, as they are uniquely suited to these studies since NMR records the correlation of changing local magnetic fields over a time scale of ns to seconds. The local magnetic fields are established by local variations in the bulk magnetic susceptibility of the sample (and so are directly tied to the sample's local structure). The fluctuation in field that a spin sees is due to molecular transport (including molecular diffusion) through these local fields, and so reports on the length scales of structures and impediments to transport. We have developed a new set of methods DIFFUSIVE-MASS to provide a means of systematically varying the effective time scale of the measurement and thus the effective length scale. This new handle permits a detailed, microscopic picture of the structure and dynamics. Diffusive MASS NMR methods will permit a systematic set of methods and analysis for characterizing the chemistry, structure and fluid dynamics of the mobile phase in porous materials. The approach will be applicable to any diamagnetic material. In particular, the industry of oil discovery depends on understanding heterogeneous porous media.  相似文献   

4.
Copolymer brushes growing onto magnetic nanoparticles were prepared by surface chain transfer free radical polymerization. Block copolymer brushes (P(PEGMA)-co-PNIPAAm) consist of poly(ethylene glycol) monomethacrylate (PEGMA) and N-isopropylacrylamide monomer. X-ray photoelectron spectroscopy (XPS) characterized the chemical composition of copolymer. Thermogravimetric analysis (TGA) suggested that the amount of copolymer on magnetic nanoparticles decreased with increasing azodiisobutyronitrile (AIBN). The saturation magnetization decreased significantly with increasing P(PEGMA)-co-PNIPAAm. The thermosensitive point is about 43 °C for magnetic nanoparticles with 33.8% P(PEGMA)-co-PNIPAAm.  相似文献   

5.
《X射线光谱测定》2004,33(6):421-430
The present study was undertaken to establish a methodology for characterizing ceramic oxide refractory materials, as no detailed information could be found in the literature on this point. The following refractories were analysed: two silica, one alumina, one silica–alumina, two zirconium, three chrome and three magnesia refractories. X‐ray fluorescence (XRF) spectrometry was used for chemical characterization and x‐ray diffraction (XRD) for phase analysis. Phases were determined because of their influence on the end properties of refractory materials. Five analytical programmes for XRF analysis and an XRD analysis method were established. We optimized sample preparation in the form of beads for the XRF measurement by determining the most appropriate sample/flux ratio for each type of refractory. Calibration and validation standards were prepared from mixtures of reference materials, owing to the scarcity of refractory reference materials. The chemical and phase composition of different ceramic oxide refractory bricks was determined and related to the deterioration of these refractories in industrial service, because refractories with a similar chemical composition and different crystalline phases can exhibit different properties. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Microstructure and texture of cementitious porous materials   总被引:1,自引:0,他引:1  
We have characterized the microstructure of different cementitious materials (white and Portland cement pastes, mortars, concretes) by different magnetic resonance techniques. In particular, we show how the measurement of proton nuclear magnetic spin-lattice relaxation as a function of magnetic field strength (and hence nuclear Larmor frequency) can provide reliable information on the dynamics of proton species at the surface of CSH, the specific surface area and the pore size distribution throughout the progressive hydration of cement-based materials. The measurement does not require any drying temperature modification and is sufficiently fast to be applied continuously during the progressive hydration of the material. Coupling this method with the standard proton nuclear spin relaxation and high-resolution NMR allows us to follow the development of microscale texture within the material.  相似文献   

7.
在现代药物的研发过程中,能够检测药物分子化学组成、结构及其与生物分子相互作用的新方法、新技术始终是人们最关注的科学问题之一。而光谱分析(包括红外、紫外和核磁共振)是最常用的分析手段。其中,核磁共振波谱技术通过检测组成有机化合物分子的原子核在周围化学环境影响下的跃迁规律,来获得反映核相关性质的参数,而这些参数包含了详尽的有机化合物分子结构和分子间相互作用的信息。核磁共振波谱能在液态、固态、气态,甚至在生物原位环境等多种复杂条件下,提供体系中分子组成、原子水平分辨率的三维结构、相互作用和动态过程等丰富信息,特别是药物研发中极其重要的药物分子与生物大分子的相互作用信息。因此核磁共振波谱在药物研发中发挥了越来越重要的作用,近年来在药物研发领域的应用是越来越广泛。而有关核磁共振波谱专门应用于药物研发方面的综述并不多见。由此,在简单阐述核磁共振波谱基本原理的基础上,从药物靶标生物大分子受体的结构与动力学、药物设计与筛选,以及药物代谢三方面综述了近年来核磁共振波谱在药物研发中的最新应用进展,以期系统的为分析工作者们提供核磁共振波谱在该领域目前的研究概貌。  相似文献   

8.
In a previous work [1], a large magnetic anisotropy was found as a preliminary result of the formation of electrochemically deposited Fe93P7 alloy. Mössbauer spectroscopy was used in order to get information about the magnetic anisotropy of electrochemically prepared Fe?P and Fe?Ni?P amorphous alloys. The Mössbauer spectra and the hyperfine field distributions of the samples show that Fe?Ni?P and Fe?P electrodeposited amorphous materials can be prepared in a reproducible way from a point of view of short range ordering which is strongly dependent on the chemical composition determined by preparation conditions. The average magnetization directions in the samples were determined from the transmission spectra measured in a normal and two tilted geometries by two types of evaluation methods [2,3]. We have found that the small spread model of the domain structure better describes the experimental results. The obtained data reflect the prevailing anomalous magnetization orientation in these electrodeposited amorphous alloys.  相似文献   

9.
Water soluble silicon nanoparticles were prepared by the reaction of bromine terminated silicon nanoparticles with 3-(dimethylamino)propyl lithium and characterized with liquid and solid state nuclear magnetic resonance (NMR) and photoluminescence (PL) spectroscopies. The surface site dependent 29Si chemical shifts and the nuclear spin relaxation rates from an assortment of 1H-29Si heteronuclear solid state NMR experiments for the amine coated reaction product are consistent with both the 1H and 13C liquid state NMR results and routine transmission electron microscopy, ultra-violet/visible, and Fourier transform infrared measurements. PL was used to demonstrate the pH dependent solubility properties of the amine passivated silicon nanoparticles.  相似文献   

10.
Published spectroscopic observations pertaining to the crystal structure of native celluloses are reviewed for the purpose of defining our current level of understanding about crystalline polymorphism in these materials. Emphasis is placed on observations from solid state 13C nuclear magnetic resonance (NMR), which first led to the postulate that most native, semicrystalline celluloses are composites of two crystalline allomorphs, labeled Ialpha and Ibeta. Historical background is presented, highlighting the structural controversies which mainly arose because different native celluloses were used, each one representing a different mixture of allomorphs. Input from Raman, infrared (IR) and electron diffraction data is included in the discussion of our current understanding of polymorphism in native celluloses. Also noted is the input from more recently studied celluloses (e.g., Halocynthia) as well as from newer processes that convert the Ialpha to the Ibeta form. On the basis of Raman and IR observations, it is argued that the Ialpha and Ibeta allomorphs differ in hydrogen bonding patterns only and that backbone conformations are nearly identical. Also, the point is made that the absence of correlation field splittings in the Raman spectra calls into question (although it does not disprove) whether the normal two-chain-per-unit-cell, monoclinic Ibeta allomorph really possesses two equivalent chains. Considerable discussion is devoted to the allomorphic composition of cellulose crystallites in higher plants. Published methods of NMR lineshape analysis for the higher plant celluloses are reviewed and critiqued, both from the point of view of lineshape theory and from the point of view of self-consistency of inferences that are based on lineshape analyses for different carbons (particularly C1 and C4). It is concluded that higher plant celluloses most likely possess a minor amount of the Ialpha allomorph where the Ialpha/Ibeta ratio is probably less than 0.25.  相似文献   

11.
Nanotechnology is set to impact a wide range of various fields, including medicine, materials technology, environmental sciences, and engineering/manufacturing. Nanoparticles are categorized depending on their size, composition, shape, and surface functionality. Due to the excessive growth of nanostructured materials (NSMs) in production and industrial applications, human and environmental exposure to them and their possible toxicity issues are inevitable. The main objective of this review is to study NSMs, in particular metallic and metallic oxide nanoparticles, and properties that have a determinative role in their bioimpacts. Nevertheless, the main focus is to provide an overview of NSMs toxicology. Medical and environmental applications of the NSMs are discussed here. Also, key factors on the toxicity of the nanoparticles such as shape, size, chemical composition, and surface functionality are discussed. Finally, toxicity of the nanoparticles is going to be highlighted, and relevant studies are critically compared. This review gives a broad scientific view for improving the functional efficiency of nanomaterials while mitigating their possible adverse and unintended effects on biological systems.  相似文献   

12.
This study presents a comprehensively and systematically structural, chemical and magnetic characterization of ~9.5 nm virtually monodispersed nickel ferrite (NiFe2O4) nanoparticles prepared using a modified liquid–solid-solution (LSS) assisted hydrothermal method. Lattice-resolution scanning transmission electron microscope (STEM) and converged beam electron diffraction pattern (CBED) techniques are adapted to characterize the detailed spatial morphology and crystal structure of individual NiFe2O4 particles at nano scale for the first time. It is found that each NiFe2O4 nanoparticle is single crystal with an fcc structure. The morphology investigation reveals that the prepared NiFe2O4 nanoparticles of which the surfaces are decorated by oleic acid are dispersed individually in hexane. The chemical composition of nickel ferrite nanoparticles is measured to be 1:2 atomic ratio of Ni:Fe, indicating a pure NiFe2O4 composition. Magnetic measurements reveal that the as-synthesized nanocrystals displayed superparamagnetic behavior at room temperature and were ferromagnetic at 10 K. The nanoscale characterization and magnetic investigation of monodispersed NiFe2O4 nanoparticles should be significant for its potential applications in the field of biomedicine and magnetic fluid using them as magnetic materials.  相似文献   

13.
Solid-state (33)S MAS NMR spectra of a variety of inorganic sulfates have been obtained at magnetic field strengths of 4.7, 14.1, 17.6, and 18.8 T. Some of the difficulties associated with obtaining natural abundance (33)S NMR spectra have been overcome by using a high magnetic field strength and magic angle spinning (MAS). Multiple factors were considered when analyzing the spectral linewidths, including magnetic field inhomogeneity, dipolar coupling, chemical shift anisotropy, chemical shift dispersion, and quadrupolar coupling. In most of these sulfate samples, quadrupolar coupling was the dominant line broadening mechanism. Nuclear electric quadrupolar coupling constants (C(q)) as large as 2.05 MHz were calculated using spectral simulation software. Spectral information from these new data are compared with X-ray measurements and GAUSSIAN 98W calculations. A general correlation was observed between the magnitude of the C(q) and the increasing difference between S-O bond distances within the sulfate groups. Solid-state (33)S spin-lattice (T(1)) relaxation times were measured and show a significant reduction in T(1) for the hydrated sulfates. This is most likely the result of the modulation of the time-dependent electric field gradient at the nuclear site by motion of water molecules. This information will be useful in future efforts to use (33)S NMR in the compositional and structural analysis of sulfur containing materials.  相似文献   

14.
Solid-state (33)S MAS NMR spectra of a variety of inorganic sulfates have been obtained at magnetic field strengths of 4.7, 14.1, 17.6, and 18.8 T. Some of the difficulties associated with obtaining natural abundance (33)S NMR spectra have been overcome by using a high magnetic field strength and magic angle spinning (MAS). Multiple factors were considered when analyzing the spectral linewidths, including magnetic field inhomogeneity, dipolar coupling, chemical shift anisotropy, chemical shift dispersion, and quadrupolar coupling. In most of these sulfate samples, quadrupolar coupling was the dominant line broadening mechanism. Nuclear electric quadrupolar coupling constants (C(q)) as large as 2.05 MHz were calculated using spectral simulation software. Spectral information from these new data are compared with X-ray measurements and GAUSSIAN 98W calculations. A general correlation was observed between the magnitude of the C(q) and the increasing difference between S-O bond distances within the sulfate groups. Solid-state (33)S spin-lattice (T(1)) relaxation times were measured and show a significant reduction in T(1) for the hydrated sulfates. This is most likely the result of the modulation of the time-dependent electric field gradient at the nuclear site by motion of water molecules. This information will be useful in future efforts to use (33)S NMR in the compositional and structural analysis of sulfur containing materials.  相似文献   

15.
李爽  冯秀燕 《波谱学杂志》2013,30(1):148-155
简要介绍了核磁共振(NMR)方法在煤炭组成及热解过程分析中的应用. 目前用于煤炭分析的NMR方法主要包括固体NMR和液体NMR. 从检测手段来看,以13C NMR和1H NMR方法较多,15N NMR, 19F NMR和31P NMR也在煤炭的分析中发挥了重要作用. 其中用于区分和选择性检测不同官能团的NMR谱编辑方法的发展, 进一步推进了NMR在煤炭化工中的应用.  相似文献   

16.
A compact nuclear magnetic resonance (NMR) relaxometer–spectrometer with the continuous generation of the high-frequency energy and double magnetic field modulation has been designed for studying biological objects. Spin–lattice relaxation times and second-derivative spectra of the NMR signals have been measured. The relationship between the shape of the spectrum and the spin–lattice relaxation time has been established. This device is supposed to be used for the noninvasive measurement of the glucose concentration in the human blood from the measurement of the spin–lattice relaxation time and the NMR spectrum in a finger of a human hand.  相似文献   

17.
With a view to study the structural, electronic, magnetic, and electrical properties of Zn0.9Ni0.1O diluted magnetic semiconductor nanoparticles, systematic investigation has been undertaken. Samples were prepared for the first time by hydrazine-assisted polyol method, and the powders were annealed at various temperatures in order to obtain the samples with different grain sizes. From the Rietveld refined XRD data, lattice parameters, the average crystallite size values, and r.m.s micro-strain values were computed. From the AFM and TEM studies, the average particle sizes were obtained and are found to be in the range 12–46 nm. XPS measurements clearly indicate that the chemical states as +2 for both Zn and Ni ions and are stable with varying annealing temperature. Further, using XPS and optical studies, the electronic structure of the materials was analyzed. A careful phase analysis of the Rietveld refined XRD data (at logarithmic scale) selected area electron diffraction patterns, FTIR, Raman, and XPS studies; it was concluded that all the samples are having hexagonal wurtzite structure without any detectable impurity phases. The optical band gap values are found to exhibit a clear blue shift. The influence of oxygen vacancies on the emission spectra was studied by Photo Luminescence measurement. The magnetization studies were undertaken by VSM, MFM, and FMR techniques and confirmed the presence of clear room temperature ferromagnetism without any magnetic clusters. The carrier concentration (n) values obtained from the thermo power studies are found to decrease with increasing annealing temperature and depend on the local defects which are critically influenced by the annealing temperature and crystallite size of the nanomaterials.  相似文献   

18.
In this review, we summatize recent developments in nuclear magnetic resonance (NMR) studies on (Fe-B)-based crystalline and amorphous alloys, focusing on the application of NMR in identifying the existence of short-range order (SRO), determining the types of SRO, characterizing the behavior of the SRO and exploring the effect of the SRO on the magnetic properties for the Fe-B system. NMR experiments reveal that certain local environments surrounding the B atoms exist in both crystalline and amorphous Fe-B alloys. The type of SRO existing in this rapidly quenched system can be either o-Fe3B or bct-Fe3B, or a mixture, depending on the composition and processing factors, especially the carbon content and quenching speed. The SRO originates from a strong covalent bonding between the B and Fe atoms. As this interaction plays the same role in both crystalline and amorphous Fe-B alloys, the SRO which occurs in the amorphous Fe-B alloys is similar to the SRO which exists in their crystalline counterparts. NMR, in combination with magnetization measurements, provides evidence indicating that the SRO existing in the amorphous Fe-B alloys has a significant effect on their soft magnetic properties and that different types of SRO may act differently, thus providing an opportunity to improve the magnetic properties by changing the SRO. In connection with reviewing the achievements of NMR studies in recent years, brief comments concerning the advantages and potential of NMR experiments in the investigation of other magnetically-ordered materials will also be presented.  相似文献   

19.
《Solid State Ionics》2006,177(17-18):1405-1411
Two model compounds, lithium imidazolium (LiIm) and lithium 2-undecylimidazolium (und-LiIm), were synthesized. These materials are chosen as models of potential lithium ion conductors for use as electrolytes in lithium batteries. Solid-state NMR was used to provide information on the microscopic interactions including ionic mobility and ring reorientations which govern the efficiency of conductivity. Lithium imidazolium was mixed with lithium methylsulfonate, generating a doped complex in which a doubly lithiated imidazole ring was inferred based on the 7Li NMR chemical shifts. Our research includes 6,7Li variable temperature MAS NMR experiments at intermediate spinning speeds, relaxation studies to determine spin-lattice relaxation times (T1) of lithium ion hopping, and 2D exchange spectroscopy to determine possible chemical exchange processes. The possibility of 2-site ring reorientation for the doubly lithiated imidazole ring was supported by exchange spectroscopy. Comparisons of spin-lattice relaxation times and corresponding activation energies of the lithium imidazolium and the doped complex point to a higher degree of mobility in the latter.Lithium 2-undecylimidazolium was prepared and exhibited a lower melting point than the parent lithium imidazolium, as expected. This small molecule was chosen as representative of a side-chain functionalized polyethylene-based material. 7Li MAS spectra show mainly the presence of the doubly lithiated imidazole ring in pure und-LiIm, and in the LiCH3SO3–und-LiIm mixture. The data clearly indicate local mobility of the lithium ions in the materials.  相似文献   

20.
Renaissance lustred majolica shards from Gubbio and Deruta (Central Italy) were investigated in order to point out differences in chemical and mineralogical composition between these two very similar Italian potteries and furthermore to find correlations with the local raw clay materials probably used for their production. Chemical and mineralogical analysis on the ceramic body were performed by ICP-OES (inductively coupled plasma optical emission spectroscopy) and XRD (X-ray diffraction), respectively. Investigation of the ceramic body revealed significant differences on calcium content indicating that it could be used as a marker for the two different productions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号