首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polyacrylonitrile nanofiber cloth coated with graphene oxide was carbonized and activated to fabricate nitrogen- and oxygen-enriched porous carbon/graphene (NAC@Gr) sandwich-like composites. The influence of graphene coating on the microstructure, surface composition, and supercapacitive performance of the as-prepared composites was investigated. The results indicated that significantly enhanced energy storage capability can be achieved due to the high specific surface area, optimized pore structure, and surface functionality. The composites show both high gravimetric and volumetric specific capacitances, for example, 380 F g?1 (178 F cm?3) at 0.1 A g?1 in 6 M KOH and 228 F g?1 (125 F cm?3) at 1 A g?1 in 1 M TEABF4/AN electrolyte. The assembled symmetric supercapacitors exhibit high energy density, high power density, excellent cycling stability, and high-rate performance.  相似文献   

2.
Rich nitrogen-doped mesoporous graphene (NDMG) with a large specific surface area of 496.8 m2 g?1 and high electrical conductivity of 327.2 S cm?1, and suitable pore size was synthesized by a facile co-thermal annealing of pre-prepared phenolic polymer and dicyandiamide. The NDMG has a high nitrogen content (7.9 wt%) and can act as promising electroactive materials for two-electrode symmetric supercapacitors. The NDMG cells displayed a high specific capacitance of ca. 316 F g?1 at 0.5 A g?1, which is much higher than that of the pristine graphene devices (ca. 123 F g?1). Moreover, compared with the capacitance drop rate of pristine graphene devices (8.9 %), the specific capacitance of NDMG cells was decreased by only 3.2 % after 2000 cycles, exhibiting a good cycling performance and reversibility. In addition, the specific capacitance of the NDMG cells can reach 251 F g?1 at 5.0 A g?1, revealing an excellent rate capability and implying the ability to deliver a high energy density at a high power density. The good electrochemical performances of NDMG can be attributed to its high surface area, suitable mesopore size, and high electrical conductivity.  相似文献   

3.
ZnCo2O4 nanoflakes were directly grown on Ni foam via a two-step facile strategy, involving cathodic electrolytic electrodeposition (ELD) method and followed by a thermal annealing treatment step. The results of physical characterizations exhibit that the mesoporous ZnCo2O4 nanoflakes have large electroactive surface areas (138.8 m2 g?1) and acceptable physical stability with the Ni foam, providing fast electron and ion transport sites. The ZnCo2O4 nanoflakes on Ni foam were directly used as integrated electrodes for supercapacitors and their electrochemical properties were measured in 2 M KOH aqueous solution. The ZnCo2O4 nanoflake electrode exhibits a high capacitance of 1781.7 F g?1 at a current density of 5 A g?1 and good rate capability (62% capacity retention at 50 A g?1). Also, an excellent cycling ability at various current densities from 5 to 50 A g?1 was obtained and 92% of the initial capacitance maintained after 4000 cycles. The results demonstrate that the proposed synthesis route is cost-effective and facile and can be developed for preparation of electrode materials in other electrochemical supercapacitors.  相似文献   

4.
Chunnian Chen  Wei Fan  Ting Ma  Xuwang Fu 《Ionics》2014,20(10):1489-1494
A unique and convenient one-step hydrothermal process for synthesizing functionalized nitrogen-doped graphene (FGN) via ethylenediamine, hydroquinone, and graphene oxide (GO) is described. The graphene sheets of FGN provide a large surface area for hydroquinone molecules to be anchored on, which can greatly enhance the contribution of pseudocapacitance. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and electrochemical workstation are used to characterize the materials. The nitrogen content exhibited in FGN can be up to 9.83 at.%, and the as-produced graphene material shows an impressive specific capacitance of 364.6 F g?1 at a scan rate of 10 mV s?1, almost triple that of the graphene (GN)-based one (127.5 F g?1). Furthermore, the FGN electrodes show excellent electrochemical cycle stability with 94.4 % of its initial capacitance retained after 500 charge/discharge cycles at the current density of 3 A g?1.  相似文献   

5.
Carbon-coated ZnFe2O4 spheres with sizes of ~110–180 nm anchored on graphene nanosheets (ZF@C/G) are successfully prepared and applied as anode materials for lithium ion batteries (LIBs). The obtained ZF@C/G presents an initial discharge capacity of 1235 mAh g?1 and maintains a reversible capacity of 775 mAh g?1 after 150 cycles at a current density of 500 mA g?1. After being tested at 2 A g?1 for 700 cycles, the capacity still retains 617 mAh g?1. The enhanced electrochemical performances can be attributed to the synergetic role of graphene and uniform carbon coating (~3–6 nm), which can inhibit the volume expansion, prevent the pulverization/aggregation upon prolonged cycling, and facilitate the electron transfer between carbon-coated ZnFe2O4 spheres. The electrochemical results suggest that the synthesized ZF@C/G nanostructures are promising electrode materials for high-performance lithium ion batteries.
Graphical abstract ?
  相似文献   

6.
Honeycomb-like MnO2 nanospheres were synthesized using stainless steel substrates by a facile chemical bath deposition method. The obtained nanospheres were about 200–400 nm in diameter and consisted of porous ultrathin nanosheets. Honeycomb-like MnO2 nanospheres exhibited a high specific capacitance of 240 F g?1 and 87.1% capacitance retention after 1000 cycles at a current density of 0.5 A g?1. These remarkable electrochemical results imply great potential for applications of the honeycomb-like MnO2 nanospheres in supercapacitors.  相似文献   

7.
The structure and electrochemical properties of amorphous CoS2 and crystalline CoS2 have been studied with both experimental characterization and theoretical calculations. In the field of experimental characterization, a facile chemical precipitation method is used to synthesize amorphous and crystalline CoS2 samples with calcining temperatures of 200 and 280 °C, respectively. Comparing with crystalline CoS2, amorphous structure of CoS2 manifests great electron conductivity, effective porous structure, and exhibit a high specific capacitance of 996.16 F g?1 at current density of 0.5 A g?1, excellent rate capability of 89.8% retention with the current density ranging from 0.5 to 5 A g?1, and a great cycling stability of 97.6% retention after 10,000 cycles at 2 A g?1 in 6 mol L?1 KOH aqueous electrolyte. In the area of theoretical calculation, we used the first principle and obtained the band structure with band gap of 0.00369 eV and DOSs with high locality of D-orbital from 69.88689 electrons/eV main peak, in the CoS2 amorphous. The result confirms that amorphous CoS2 have higher conductivity than crystalline CoS2 in theory. In addition, the as-assembled asymmetric supercapacitor of Co-S-200//AC also exhibits the maximum specific capacitance of 104 F g?1 within a cell voltage from 0 to 1.5 V at current density of 0.5 A g?1 and indicates a great cycling stability of 95.68% and excellent capacitance behavior. All results demonstrate a great potential of amorphous CoS2 active material for supercapacitors.  相似文献   

8.
Three-dimensional hierarchical Co3O4@C hollow microspheres (Co3O4@C HSs) are successfully fabricated by a facile and scalable method. The Co3O4@C HSs are composed of numerous Co3O4 nanoparticles uniformly coated by a thin layer of carbon. Due to its stable 3D hierarchical hollow structure and uniform carbon coating, the Co3O4@C HSs exhibit excellent electrochemical performance as an anode material for lithium-ion batteries (LIBs). The Co3O4@C HSs electrode delivers a high reversible specific capacity, excellent cycling stability (1672 mAh g?1 after 100 cycles at 0.2 A g?1 and 842.7 mAh g?1 after 600 cycles at 1 A g?1), and prominent rate performance (580.9 mAh g?1 at 5 A g?1). The excellent electrochemical performance makes this 3D hierarchical Co3O4@C HS a potential candidate for the anode materials of the next-generation LIBs. In addition, this simple synthetic strategy should also be applicable for synthesizing other 3D hierarchical metal oxide/C composites for energy storage and conversion.  相似文献   

9.
A simple sucrose-assisted combustion and subsequent high-temperature calcination route have been employed to prepare hierarchical porous ZnMn2O4 nanostructure. When used as an electrode for supercapacitor, the ZnMn2O4 electrode displays a high specific capacitance of 411.75 F g?1 at a current density of 1 A g?1, remarkable capacitance retention rate of 64.28 % at current density of 32 A g?1 compared with 1 A g?1, as well as excellent cycle stability (reversible capacity retention of 88.32 % after 4000 cycles). The outstanding electrochemical performances are mainly attributed to its hierarchical porous architecture, which provides large reaction surface area, fast ion and electron transfer, and good structure stability. All these impressive results demonstrate that ZnMn2O4 shows promise for its application in supercapacitors.  相似文献   

10.
Sea anemone-like zinc-cobalt (Zn-Co) oxysulfides grown on nickel foam were synthesized by a hydrothermal treatment for the first time as a battery-type electrode for hybrid supercapacitors. Such a binder-free sea anemone-like Zn-Co oxysulfide electrode displays improved electrochemical properties, which can be attributed to the unique sea anemone-like morphology and the partly replacement of oxygen with sulfur since sulfur possesses a lower electronegativity. As a result, the Zn-Co oxysulfide electrode exhibits a specific capacity of 645.5 C g?1 (1 A g?1) which is much higher than 386.0 C g?1 of Zn-Co oxide electrode at the same conditions. In addition, the Zn-Co oxysulfide electrode also demonstrates good cycling stability (76.1% capacity retention after 1000 cycles). According to these, the Zn-Co oxysulfide electrode is testified to be a promising faradaic electrode for energy storage.  相似文献   

11.
Herein, porous hollow silica nanospheres were prepared via a facile sol-gel process in an inverse microemulsion, using self-assemblies of chiral amphiphile as a soft template and fine water droplets as a hard template. The shells of the hollow silica nanospheres are composed of flake-like nanoparticles with dense big holes on the surface. After covering a layer of sulfur on the silica nanospheres, followed by hydrothermal treatment in a D-glucose aqueous solution, silica-sulfur and silica-sulfur-carbon nanospheres were successfully fabricated. The silica-sulfur composites exhibit a stable capacity of 454 mAh g?1 at current density of 335 mA g?1 after 100 cycles with capacity retention of 85%, demonstrating a promising cathode material for rechargeable lithium-sulfur batteries. We believe that the approach for synthesis of porous hollow silica nanospheres and its carbon spheroidal shell can also be applicable for designing other electrode materials for energy storage.  相似文献   

12.
Flower-like MoS2 supported on three-dimensional graphene aerogel (MoS2/GA) composite has been prepared by a facile hydrothermal method followed by subsequent heat-treatment process. Each of MoS2 microflowers is surrounded by the three-dimensional graphene nanosheets. The MoS2/GA composite is applied as an anode material of sodium-ion batteries (SIBs) and it exhibits high initial discharge/charge capacities of 562.7 and 460 mAh g?1 at a current density of 0.1 A g?1 and good cycling performance (348.6 mAh g?1 after 30 cycles at 0.1 A g?1). The good Na+ storage properties of the MoS2/GA composite could be attributed to the unique structure which flower-like MoS2 are homogeneously and tightly decorated on the surface of three-dimensional graphene aerogel. Our results demonstrate that as-prepared MoS2/GA composite has a great potential prospect as anodes for SIBs.  相似文献   

13.
Herein, 3D graphene/nickel foam (GE/NF) composite matrix was successfully fabricated by using NF as template through a self-catalytic thermal chemical vapor deposition process. By using the prepared GE/NF as substrate, CoS nanosheets were deposited via a facial one-step electrochemical deposition method. Owing to the advantage of GE in boosting the electrical contact between the electroactive host material and current collector, the as-prepared 3D CoS/GE/NF electrode demonstrated a superior capacitance value of 2308 F g?1 at 1 A g?1 and a high rate capability of 70.49% at 20 A g?1. After depositing the polypyrrole (PPY) film on 3D CoS/GE/NF electrode, the electrochemical performance of CoS was further greatly improved and delivered an extremely high capacitance value of 3450 F g?1 at 1 A g?1, with good rate capability (62.61% at 20 A g?1) and improved cycling stability. The enhanced electrochemical performance of PPY/CoS/GE/NF electrode is closely related to the advantage of PPY film in increasing the electrical conductivity and reinforcing the integrity of electrode.  相似文献   

14.
A binder-free three-dimensional porous interconnected graphene (a-3DrGO@NF) was centrifugally constructed and KOH-activated at 800 °C, leading a mechanically strong and pore-developed anode candidate for lithium ion batteries (LIBs). The unique approach of the integration of the mechanical construction and thermal activation demonstrated favorable frameworks to facilitate the stable and fast migrations of both ion and electron during the galvanostatic charge/discharge process, thus significantly improving its durability and electrochemical performance compared to those without the activated and thermal treatment. The a-3DrGO@NF LIBs showed a highly reversible capacity of 1250 mAh g?1 at a current density of 0.1 A g?1 after 50 cycles without degradation relative to the first cycle. More importantly, the a-3DrGO@NF LIBs exhibited excellent large current discharge property and cyclic stability of 965 mAh g?1 in its first cycle and 545 mAh g?1 after 150 cycles at a current density of 4 A g?1. Furthermore, it can be quickly charged and discharged in a very short time of 92 s together with high-rate capability of 256 mAh g?1 after 200 cycles at 10 A g?1. At both lower and higher its current density as to 10 A g?1, the coulombic efficiency was close to 100% and showed the reliability of a-3DrGO@NF LIBs.  相似文献   

15.
In order to realize a wider application for graphene materials specifically in the field of energy storage, a simple and mass-scalable method described as “the atmospheric, low-temperature, shock-heating process” is proposed in this work. During this low-temperature process, the graphite oxide without pre-treatment is completely exfoliated to form the few-layer graphene materials at atmospheric conditions. The Brunauer-Emmett-Teller (BET)-specific surface area of acquired material at 350 °C can reach 487 m2 g?1. The acquired few-layer graphene materials are also confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HRTEM). The results demonstrate that this simple method is feasible for synthesizing the few-layer graphene materials. Besides that, the acquired graphene is also used as the cathode material in the surface-enabled lithium ion-exchanging cell. The galvanostatic charge/discharge tests show that the graphene prepared from this method is suitable for this system and displays a satisfactory electrochemical performance. The acquired graphene sample exhibits the reversible capacities of around 187, 107, 84, 58, and 45 mAh g?1 at 0.1, 2, 5, 10, and 15 A g?1, respectively. At the current density of 0.5 A g?1, the capacity retention can reach 75 % after 2000 cycles.  相似文献   

16.
One-dimensional NiMoO4 · xH2O nanorods were synthesized by a facile template-free hydrothermal method as a potential electrode material for supercapacitors. The influences of reaction temperature, reaction time, and nickel source on the properties of resultant samples were investigated. Electrochemical data reveal that the as-synthesized one-dimensional NiMoO4 · xH2O nanorod superstructures can deliver a remarkable specific capacitance (SC) of 1131 F g?1 at a current density of 1 A g?1 and remain as high as 914 F g?1 at 10 A g?1 in a 6 M KOH aqueous solution. Moreover, there is only 6.2 % loss of the maximum SC after 1000 continuous charge–discharge cycles at the high current density of 10 A g?1. Such outstanding electrochemical performance may be owing to the unique one-dimensional hierarchical structures, which can facilitate the electrolyte ions and electrons to easily contact the NiMoO4 nanorod building blocks and then allow for sufficient faradaic reactions to take place, even at high current densities.  相似文献   

17.
Yuan Dong  Run-Tian He  Li-Zhen Fan 《Ionics》2017,23(12):3329-3337
Rechargeable lithium-sulfur batteries are deemed to be a promising energy supply to next-generation high energy power system, yet dissolution of lithium polysulfides in the electrolyte leads to poor cycling performance. Here, we report an approach to assemble graphene and polydopamine double-wrapped porous carbon/sulfur (GN-PD-PC-S) for lithium-sulfur batteries. Remarkably, the double-wrapping graphene and polydopamine further help confine the sulfur and polysulfides inside the mesopores and micropores of porous carbon. Moreover, the hierarchical porous structures provide a conductive network for electron transfer and facilitate the effective accommodation of the volume change of sulfur. The GN-PD-PC-S cathode presents an excellent cycling stability of 821 mAh g?1 after 100 cycles, with a favorable high-rate capability of 496 mAh g?1 at a current density of 2 A g?1. Our results indicate the importance of chemically synergistic effect of polymer and carbon in the electrode system for achieving high-performance electrodes in rechargeable lithium-sulfur batteries.  相似文献   

18.
Jinxue Guo  Fenfen Li  Jing Sui  Haifeng Zhu  Xiao Zhang 《Ionics》2014,20(11):1635-1639
Three-dimensional Co3O4-graphene frameworks (3D-CGFs) are prepared with a one-pot hydrothermal method. Co3O4 particles are in situ anchored on graphene sheets, and the resulting composite self-assembles into 3D architecture during the hydrothermal treatment. Scanning electron microscope, transmission electron microscope, powder X-ray powder diffraction, and Raman spectroscopy are employed to characterize the sample. When tested as anode materials for lithium-ion batteries, 3D-CGFs demonstrate remarkable electrochemical lithium storage properties, such as large and stable reversible capacity (>530 mAh g?1 at 500 mA g?1 over 300 cycles), good capacity retention (88 % retention after 300 cycles at 500 mA g?1 compared with the 4th cycle), excellent high-rate performance (515 mAh g?1 at 1 A g?1), making it a promising candidate for high-performance anode materials, especially for high-rate lithium-ion batteries.  相似文献   

19.
Silicon/polyaniline-based porous carbon (Si/PANI-AC) composites have been prepared by a three-step method: coating polyaniline on Si particles using in situ polymerization, carbonizing, and further activating by steam. The morphology and structure of Si/PANI-AC composites have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectra, respectively. The content and pore structure of the carbon coating layer in Si/PANI-AC have been measured by thermogravimetric analysis and N2 adsorption-desorption isotherm, respectively. The results indicate some micropores about 1~2 nm in the carbon layer appear during activation and that crystal structure and morphology of Si particles can be retained during preparation. Si/PANI-AC composites exhibit high discharge capacity about 1000 mAh g?1 at 1.5 A g?1; moreover, when the current density returns to 0.2 A g?1, the discharge capacity is still 1692 mAh g?1 and remains 1453 mAh g?1 after 70 cycles. The results indicate that the porous carbon coating layer in composites plays an important role in the improvement of the electrochemical performance of pure Si.  相似文献   

20.
Nitrogen-doped porous activated carbons (N-PHACs) have been successfully synthesized using pomegranate husk as carbon precursor via ZnCl2-activation carbonization and subsequent urea-assisted hydrothermal nitrogen-doping method. The obtained N-PHACs possesses abundant mesoporous structure, high specific surface area (up to 1754.8 m2 g?1), pore volume (1.05 cm3 g?1), and nitrogen-doping content (4.51 wt%). Besides, the N-PHACs-based material showed a high specific capacitance of 254 F g?1 at a current density of 0.5 A g?1 and excellent rate performance (73% capacitance retention ratio even at 20 A g?1) in 2 M KOH aqueous electrolyte, which is attributed to the contribution of double-layer capacitance and pseudocapacitance. The assembled N-PHACs-based symmetric capacitor with a wide operating voltage range of 0–1.8 V exhibits a maximum energy density of 15.3 Wh kg?1 at a power density of 225 W kg?1 and superior cycle stability (only 6% loss after 5000 cycles) in 0.5 M Na2SO4 aqueous electrolyte. These exciting results suggest that the novel N-doping porous carbon material prepared by a green and low-cost design strategy has a potential application as high-performance electrode materials for supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号