首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the intracellular Ca2+ concentration regulate numerous cell functions and display diverse spatiotemporal dynamics, which underlie the versatility of Ca2+ in cell signaling. In many cell types, an increase in the intracellular Ca2+ concentration starts locally, propagates within the cell (Ca2+ wave) and makes oscillatory changes (Ca2+ oscillation). Studies of the intracellular Ca2+ release mechanism from the endoplasmic reticulum (ER) showed that the Ca2+ release mechanism has inherent regenerative properties, which is essential for the generation of Ca2+ waves and oscillations. Ca2+ may shuttle between the ER and mitochondria, and this appears to be important for pacemaking of Ca2+ oscillations. Importantly, Ca2+ oscillations are an efficient mechanism in regulating cell functions, having effects supra-proportional to the sum of duration of Ca2+ increase. Furthermore, Ca2+ signaling mechanism studies have led to the development of a method for specific inhibition of Ca2+ signaling, which has been used to identify hitherto unrecognized functions of Ca2+ signals.  相似文献   

2.
The EPR spectra of Mn2+ ions embedded into precipitated phases of Mg2+, Cd2+, Fe2+ and Ca2+ in NaCl single crystals have been investigated. The spectrum from samples whose major impurity is Mg, Cd or Fe corresponds to Mn2+ substituting some divalent cation inside the Suzuki phase (6NaCl.MCl2). The existence of such a phase has been ascertained by means of Raman spectroscopy. On the other hand, the EPR spectrum of Ca2+ doped samples has been attributed to Mn2+ inside various CaCl2 precipitates.  相似文献   

3.
The intracellular free Ca2+ concentration ([Ca2+]i) could be correlated with the contractile response in rat mesangial cells using an apparatus which measured both biochemical processes simultaneously. Long-term pretreatment of mesangial cells with 12-O-tetradecanoly-phorbol 13-acetate (24 h, 500 nM) increased the (20 nM) angiotensin II-induced mobilization of Ca2+ and led to an enhanced and sustained contraction of the cells. The contractile response was delayed by approximately 3.5 s with respect to the intracellular increase in Ca2+ concentration. The simultaneous registration of Ca2+ transients and cell contractions confirms that [Ca2+]i is the major determinant of the angiotensin II-mediated mesangial cell contraction.Dedicated to Professor Horst H. A. Linde on the occasion of his 60th birthday.  相似文献   

4.

Background  

High concentrations of glutamate can accumulate in the brain and may be involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease. This form of neurotoxicity involves changes in the regulation of cellular calcium (Ca2+) and generation of free radicals such as peroxynitrite (ONOO-). Estrogen may protect against glutamate-induced cell death by reducing the excitotoxic Ca2+ influx associated with glutamate excitotoxicity. In this study, the inhibition of N-methyl-D-aspartate (NMDA) receptor and nitric oxide synthase (NOS) along with the effect of 17β-estradiol (17β-E2) and a more potent antioxidant Δ8, 17β-estradiol (Δ8, 17β-E2) on cell viability and intracellular Ca2+ ([Ca2+]i), following treatment of rat cortical cells with glutamate, was investigated.  相似文献   

5.
Eu2+激活的Ca3SiO5绿色荧光粉的制备和发光特性研究   总被引:3,自引:0,他引:3       下载免费PDF全文
杨志平  刘玉峰 《物理学报》2006,55(9):4946-4950
研究了Eu2+激活的绿色发光材料Ca3SiO5的制备条件和发光性质. Eu2+中心形成主峰值为501 nm和次峰值为570 nm的特征宽带,两峰值叠加形成发射峰值为502nm的绿色发射光谱带. 利用这些光谱结果和Van Uitert 经验公式,确认Ca3SiO5:Eu2+中存在两种性质有差异的Eu2+发光中心,它们分别占据基质中八配位的Ca2+(Ⅰ)格位和四配位的Ca2+(Ⅱ)格位. 其激发光谱分布在250—450 nm的波长范围,峰值位于375 nm处,可以被InGaN管芯产生的350—410 nm辐射有效激发. 关键词: 发光 荧光粉 绿色荧光粉 3SiO5')" href="#">Ca3SiO5 2+')" href="#">Eu2+  相似文献   

6.
Chemical ordering of Ca2+ doped 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 ceramics were investigated by dielectric spectra, TEM diffraction and A1g mode in Raman spectra. It is found degree of relaxor behavior increases first, and then decreases. It conflicts the prediction Ca2+ substitutes for A-site ion Pb2+ according to crystal chemistry theory. In this letter, a new mechanism that Ca2+ substitutes for B-site ions has been proposed, which satisfactorily explained change of chemical ordering. It exhibits strong evidence doped ions with larger ionic radius (Ca2+) are quite possibly substitute much smaller ones (Nb5+ or Ti4+) in B-site rather than all substitute larger A-site ion in relaxor ferroelectrics.  相似文献   

7.
《Current Applied Physics》2010,10(4):1087-1091
Eu2+ and Mn2+ co-doped calcium aluminate silicate chloride phosphors with the chemical composition of Ca3Al2Si2O8Cl4:Eu2+, Mn2+ have been prepared by a solid-state method, and their luminescence properties have been investigated by tuning the En2+/Mn2+ ions concentration. The phase formation and microstructure of Ca3Al2Si2O8Cl4:Eu2+, Mn2+ phosphors have been illuminated by XRD and SEM analysis. Photoluminescence (PL) spectrum reveals that Ca3Al2Si2O8Cl4:Eu2+ exhibits a strong blue emission band centered at 431 nm, while Ca3Al2Si2O8Cl4:Eu2+, Mn2+ can emit bluish-white light by adjusting the Mn2+ content appropriately. The energy transfer mechanism involving Eu2+–Mn2+ have also been investigated.  相似文献   

8.
Results of temperature dependence of EPR spectra of Mn2+ and Cu2+ ions doped calcium cadmium acetate hexahydrate (CaCd(CH3COO)4·6H2O) have been reported. The investigation has been carried out in the temperature range between room temperature (~ 300 K) and liquid nitrogen temperature. A I-order phase transition at 146 ± 0.5 K has been confirmed. In addition a new II-order phase transition at 128 ± 1 K has been detected for the first time. There is evidence of large amplitude hindered rotations of CH3 groups which become frozen at ~ 128 K. The incorporation of Cu2+ and Mn2+ probes at Ca2+ and Cd2+ sites respectively provide evidence that the phase transitions are caused by the molecular rearrangements of the common coordinating acetate groups between Ca2+ and Cd2+ sites. In contradiction to the previous reports of a change of symmetry from tetragonal to orthorhombic below 140 K, the symmetry of the host is concluded to remain tetragonal in all the three observed phases between room temperature and liquid nitrogen temperature.  相似文献   

9.
<正>Ca2BO3Cl:Ce3+,Ca2BO3Cl:Tb3+,and Ca2BO3Cl:Ce3+,Tb3+ phosphors are synthesized by a high temperature solid-state reaction.The emission intensity of Ce3+ or Tb3+ in Ca2BO3Cl is influenced by the Ce3+ or Tb3+ doping content,and the optimum concentrations of Ce3+ and Tb3+ are 0.03 mol and 0.05 mol,respectively.The concentration quenching effect of Ce3+ or Tb3+ in Ca2BO3Cl occurs,and the concentration quenching mechanism is d-d interaction for either Ce3+ or Tb3+.The Ca2BO3Cl:Ce3+,Tb3+ can produce colour emission from blue to green by properly tuning the relative ratio between Ce3+ and Tb3+,and the emission intensity of Tb3+ in Ca2BO3Cl can be enhanced by the energy transfer from Ce3+ to Tb3+.The results indicate that Ca2BO3Cl:Ce3+,Tb3+ may be a promising double emission phosphor for UV-based white light emitting diodes.  相似文献   

10.
We have examined the spatiotemporal aspects of PRL-induced Ca2+ signals using high-speed fluo-3 confocal imaging. We found that PRL stimulated Ca2+ entry and intracellular Ca2+ mobilization. Ca2+ influx was seen as a peripheral increase in [Ca2+]i without amplification in the nucleus region. Intracellular Ca2+ mobilization was seen as a propagating intracellular calcium wave with a strong amplification in the nuclear region. The amplitude of PRL-induced Ca2+ increases would be sufficient to stimulate cell proliferation. Furthermore, PRL induced an increase in [3H]thymidine incorporation. These data suggest that PRL would be able to induce mitogenesis through a Ca2+-dependent pathway.  相似文献   

11.
Assembly of the catalytic cluster, Mn4CaO x Cl y , comprising the water-oxidizing complex (WOC) of photosystem II (PSII), occurs during biogenesis in the presence of the apo-WOC-PSII complex, Mn2+, Ca2+ and Cl? cofactors under weak illumination. The in vitro assembly process known as photo-activation involves several intermediates that have been resolved in previous kinetic studies. (Bi)carbonate has been shown to stimulate the rate of formation and yield of the first stable light-induced Mn3+ assembly intermediate (IM1) from Mn2+ bound to the high-affinity assembly site in apo-WOC-PSII. 13C electron spin echo envelope modulation has previously revealed that (bi)carbonate is a ligand to this Mn2+. Herein, we use parallel-mode electron paramagnetic resonance (EPR) spectroscopy to characterize the Mn3+ photoproduct, which exists as a ternary complex with carbonate at the high-affinity assembly site (in the absence of Ca2+) formulated as [CO3-Mn3+-apo-WOC-PSII]. The EPR-derived spectral parameters of IM1 (the g value, 55Mn hyperfine coupling constant (A Z) and the ligand-field splitting parameters D/E) are independent of solution pH, in marked contrast to their strong pH dependence in the absence of bicarbonate. (Bi)carbonate coordination “chemically isolates” the IM1 from external pH changes, much like that caused by Ca2+ coordination, revealing similar roles in photo-assembly. The cumulative results reveal that (bi)carbonate and Ca2+ coordination control the ligand field strength and symmetry around the initial high-affinity Mn3+, consistent with the possible formation of a μ2-oxide bridge in IM1, [Mn3+(O2?)Ca2+]. These events greatly improve the quantum yield of subsequent steps in photo-assembly.  相似文献   

12.
Hydroxyapatite (Ca5(PO4)3OH) is a well-known bioceramic material used in medical applications because of its ability to form direct chemical bonds with living tissues. This mineral is currently used as a host for rare-earth ions (e.g. Gd3+, Pr3+, Tb3+, etc.) to prepare phosphors that can be used in light emitting devices of different types. In this study Ca5(PO4)3OH:Gd3+,Pr3+ phosphors were prepared by the co-precipitation method and were characterised by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy, energy dispersive x-ray spectroscopy and photoluminescence spectroscopy. The x-ray diffraction pattern was consistent with the hexagonal phase of Ca5(PO4)3OH referenced in JCPDS card number 73-0293. The x-ray photoelectron spectroscopy data indicated that Ca2+ occupied two different lattice sites, referred to as Ca1 and Ca2. The photoluminescence data exhibited a narrowband emission located at 313 nm, which is associated with the 6P7/28S7/2 transition of the Gd3+ ion. This emission is classified as ultraviolet B and it is suitable for use in phototherapy lamps to treat various skin diseases. The photoluminescence intensity of the 313 nm emission was enhanced considerably by Pr3+ co-doping.  相似文献   

13.
In our study, the 1% mol Eu2+ doped Li2CaSiO4: B3+ phosphors were prepared by the combustion method as fluorescent material for ultraviolet, light-emitting diodes (UV-LEDs) used as a light source. The properties of Li2 (Ca0.99, Eu0.01) SiO4: B3+ phosphors with urea concentration, doping boric acid and a series of initiating combustion temperature were investigated. The crystallization and particle sizes of Li2 (Ca0.99, Eu0.01) SiO4: B3+ has been investigated by using powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Luminescence measurements showed that the phosphors can be efficiently excited by UV to the visible region, and exhibited bluish green light with a peak of 480 nm. The results showed that the boric acid was effective in improving the luminescence intensity of Li2 (Ca0.99, Eu0.01) SiO4: B3+ and the optimum molar ratio of boric acid to calcium nitrate was about 0.06. The optimized phosphors Li2 (Ca0.99, Eu0.01) SiO4: B 0.06 3+ showed 180% improved emission intensity compared with that of the Li2 (Ca0.99, Eu0.01) SiO4 phosphors under ultraviolet (λex =287 nm) excitation.   相似文献   

14.
The broadband inter-configurational (4f15d1→4f2) emission of Pr3+ doped in lanthanum orthophosphate (LaPO4) and in calcium pyrophosphate (Ca2P2O7) has been investigated under plasma excitation. The synthesis by spray pyrolysis at moderate temperature followed by a controlled annealing proves to be a very efficient way to produce good quality UVC emitting phosphor Ca1.92Pr0.04Na0.04P2O7 (α phase). The emission of this phosphor in the wavelength range 200-350 nm has been measured with a prototype device, which can be employed for anti-microbial testing.  相似文献   

15.
Single crystals of pure, Ca2+ and Sr2+ doped NH4Sb3F10 are grown by slow evaporation technique. The effect of dopants on the growth and physicochemical properties also have been investigated and reported for the first time. The grown crystals are characterized with the aid of single crystal X-ray diffractometry to confirm the crystal structure. EDAX studies are done to confirm the presence of dopants in the crystal lattice. The vibrational frequencies of various group ligands in the crystals have been derived from the Fourier transform infrared (FT-IR) spectrum. From the optical absorption spectrum the band gap energy was calculated and it was found to be 5.76, 6.29 and 6.35 eV for pure, Ca2+ and Sr2+ doped NH4Sb3F10 crystals respectively. Thermal stability of the sample has been analysed using TG-DTA analysis. The activation energy of pure, Ca2+ and Sr2+ doped NH4Sb3F10 crystals were calculated from the dc conductivity measurements and it is found to be 0.2728, 0.2816 and 0.3622 eV Experimental results shows improved physicochemical properties when the dopant is added to the pure material.  相似文献   

16.
《Solid State Ionics》2006,177(9-10):893-900
M2Mn3O8 (M = Ca2+, Cu2+) compounds were synthesized and characterized in lithium cells. The M2+ cations, which reside in the van der Waals gaps between adjacent sheets of Mn3O84−, may be replaced chemically (by ion-exchange) or electrochemically with Li. More than 7 Li+/Cu2Mn3O8 may be inserted electrochemically, with concomitant reduction of Cu2+ to Cu metal, but less Li can be inserted into Ca2Mn3O8. In the case of Cu2+, this process is partially reversible when the cell is charged above 3.5 V vs. Li, but intercalation of Cu+ rather than Cu2+ and Li+/Cu+ exchange occurs during the subsequent discharge. If the cell potential is kept below 3.4 V, the Li in excess of 4 Li+/Cu2Mn3O8 can be cycled reversibly. The unusual mobility of + 2 cations in a layered structure has important implications both for the design of cathodes for Li batteries and for new systems that could be based on M2+ intercalation compounds.  相似文献   

17.
仇康  唐军  马军  罗继明 《中国物理 B》2010,19(3):30508-030508
A modified spatially extended Tang-Othmer Ca2+ model is used to study intracellular Ca2+ spiral waves numerically.It is found that,as a local stimulation,the local agonist-binding on the cell membrane,which enhances the local concentration of the messenger molecule inositol 1,4,5-trisphosphate(IP 3),can influence the dynamics of the spiral waves.1) Strong enough stimuli can change the spiral wave from a meandering to a rigidly rotating one.2) On the other hand,strong enough stimuli can suppress the spiral wave from the system.It provides the theoretical clue for controlling the spiral waves by stimulating the cell membrane.  相似文献   

18.
A new adsorbent named zirconium glyphosate [Zr(O3PCH2NHCH2COOH)2·0.5H2O, denoted as ZrGP] and its selective adsorptions to Pb2+, Cd2+, Mg2+ and Ca2+ ions in water were reported in this paper. Compared to other zirconium adsorbents, such as zirconium phosphate [Zr(HPO4)2], ZrGP exhibited highly selective adsorption to Pb2+ in solution which contained Pb2+, Cd2+, Mg2+ and Ca2+ ions. The loaded ZrGP with metallic ions can be efficaciously regenerated by aqueous solution of HCl (1.0 M) without any noticeable capacity loss, and almost all of it can be reused and recycled. The memory effect on structural regeneration of ZrGP was also found when Mg2+ and Ca2+ were adsorbed. To be specific, the structure of ZrGP was destroyed due to adsorbing these two ions, but it could be regenerated after the loaded materials were dipped in HCl solution (1.0 M) for several minutes to remove metallic ions.  相似文献   

19.
Considerable evidence indicates that the formation of peroxynitrite (ONOO) with superoxide anion (O2−⊙ot) may be involved in the neuronal toxicity of NO. Here, the effects of ONOO on intracellular free calcium concentration ([Ca2+]i) in single MN9D cells was studied by the Fura-2 microfluorometric technique. The results showed that [Ca2+]i was increased dose-dependently with the addition of ONOO (0–40 μmol/l) after 5 s and then decreased rapidly back to the basal level after ONOO was removed. [Ca2+]i response to ONOO can be blocked by removing Ca2+ from the bath or adding L-type calcium channel antagonist nifedipine (10 μmol/l) to the bath. [Ca2+]i transients by ONOO were substantially inhibited by dithiothreitol (DTT), which indicated ONOO may alter the L-type calcium channel on neuronal cell by thiol oxidation. To elucidate the mechanism of ONOO on [Ca2+]i, the electron spin resonance spin-labeling technique was used to study the effects of ONOO on the membrane fluidity and the membrane protein conformation on freshly dissociated neurons. The results indicate that ONOO decreases membrane fluidity both near the surface and deep in the membrane and affects protein conformation. The fact that DTT effectively inhibits the deterioration supports the conclusion that the change of membrane fluidity and protein conformation is involved in [Ca2+]i overload in neuronal cells induced by ONOO.  相似文献   

20.
A reddish-orange phosphor, Ca3WO6:Sm3+, was synthesized by the convenient solid-state reaction method and characterized by X-ray diffraction (XRD). Photoluminescence properties and concentration quenching of Ca3WO6:Sm3+ phosphor have been discussed in the excitation and emission spectra. Ca3WO6:Sm3+ phosphor is able to generate a strong excitation peak, which matches the emission wavelength from near-UV LEDs. Energy transfer from Sm3+ to Eu3+ in Ca3WO6 host is observed and investigated in detail. The chromaticity coordinates of Ca3WO6:Sm3+ can be regulated to approach the NTSC standard values of red phosphor by codoping Eu3+ ions. The photoluminescence properties suggest that novel Ca3WO6:Sm3+, Eu3+ phosphor might have a potential application for near-UV LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号