首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of [NiBr(2)(bpy)(2)] (bpy = 2,2'-bipyridine) with organic phosphinic acids ArP(O)(OH)H [Ar = Ph, 2,4,6-trimethylphenyl (Mes), 9-anthryl (Ant)] leads to the formation of binuclear nickel(II) complexes with bridging ArP(H)O(2)(-) ligands. Crystal structures of the binuclear complexes [Ni(2)(μ-O(2)P(H)Ar)(2)(bpy)(4)]Br(2) (Ar = Ph, Mes, Ant) have been determined. In each structure, the metal ions have distorted octahedral coordination and are doubly bridged by two arylphosphinato ligands. Magnetic susceptibility measurements have shown that these complexes display strong antiferromagnetic coupling between the two nickel atoms at low temperatures, apparently similar to binuclear nickel(II) complexes with bridging carboxylato ligands. Cyclic voltammetry and in situ EPR spectroelectrochemistry show that these complexes can be electrochemically reduced and oxidized with the formation of Ni(I),Ni(0)/Ni(III) derivatives.  相似文献   

2.
The reactivity of organonickel σ-complexes of the type [NiBr(Ar)(bpy)] (Ar is 2,4,6-tri-methylphenyl (Mes) or 2,4,6-triisopropylphenyl (Tipp); bpy is 2,2′-bipyridine) toward elemental (white) phosphorus was studied. For the reaction to occur, the complexes must be activated by removal of the bromide anion from the coordination sphere of nickel. This can be achieved either in the presence of halogen scavengers or by electrochemical reduction. The arylphosphinic acids ArP(O)(OH)H formed by hydrolysis of organic nickel phosphides are the major reaction products of the overall process.  相似文献   

3.
A new industrially applicable method of organonickel sigma-complexes production is developed. The technique is based on the reaction of the oxidative addition of ortho-substituted aromatic bromides to electrochemically generated nickel(0)-2,2′-bipyridyl complexes. Electrolysis is performed in undivided electrolyser supplied with sacrificial nickel anode with a periodic or continuous electrolyte loading. The electrochemically obtained organonickel sigma-complexes of type [NiBr(Ar)(bpy)], where Ar is 2,4,6-trimethylphenyl, 2,4,6-triisopropylphenyl, 2,6-dimethylphenyl, are highly effective precatalysts for ethylene oligomerization process, leading to the formation of linear alpha-olefines of C4–C12 fractions  相似文献   

4.
alpha-Hydrogen migration in the phosphide (Nacnac)Ti=CHtBu(PHR) (Nacnac- = [Ar]NC(Me)CHC(Me)N[Ar], Ar = 2,6-iPr2C6H3, R = C6H11, 2,4,6-iPr3C6H2, 2,4,6-tBuC6H2), prepared from salt metathesis of (Nacnac)Ti=CHtBu(PHR) with LiPHR, generates terminal and four-coordinate phosphinidene complexes (Nacnac)Ti=PR(CH2tBu), one of which was structurally characterized (R = 2,4,6-tBu3C6H2). Phosphinidene intermediate (Nacnac)Ti=PR(CH2tBu) (R = C6H11, 2,4,6-iPr3C6H2) transform to ([Ar]NC(Me)CHC(Me)P[R][CH2tBu])Ti=NAr(OEt2) through "phospha-Staudinger" and subsequent phosphaalkene-insertion reactions.  相似文献   

5.
2,4,6-Tri-tert.butylphenyl Substituted Silanes 2,4,6-Tri-tert.butylphenyl lithium reacts with trimethoxysilane, triethoxysilane, and triphenoxysilane to give the dialkoxy- or diphenoxy-(2,4,6-tri-tert.butylphenyl)-silanes Ar? SiH(OR1)2 3 ? 5 (Ar = 2,4,6-tri.tert.butylphenyl, R1 = Me, Et, Ph). Interaction of methyl lithium or n-butyl lithium with 3 – 5 leads under partial or complete substitution of the OR1-functions to the silanes Ar? SiH(OR1)R2 7 – 11 and Ar? SiHR22 12 and 13 (R2 = Me, Bu). Reaction of 3 with lithium tert.butul-amide gives tert.butylamino-methoxy-(2,4,6-tri-tert.butylphenyl)-silane 14 . 5 is reduced by LiAlH4 to 2,4,6-tri-tert.butylphenyl-silane 6 . The reaction of 3 with antimony trifluoride results in formation of 2,4,6-tri-tert.butylphenyl trifluorosilane 2 . Attempts to replace the alkoxy or phenoxy groups in 3 – 5 by chlorine led under silion carbon bond cleavage to 1,3,5-tri-tert.butylbenzene.  相似文献   

6.
基于H3tbtd、H3bbta和bpy配体在水热条件下合成了配位聚合物{[Co3(tbtd)2(bpy)2(H2O)]·5H2O}n(1)和配合物[Cd2(Hbbta)(bpy)3(C2O4)(H2O)](2)(H3tbtd=4?(2,4,6?三羧基苯基)?2,2′,6′,2″?三联吡啶,H3bbta=1?氟?2,4,6?苯三酸,bpy=2,2′?联吡啶),并用元素分析、红外光谱、X射线单晶衍射等对其进行了表征。配聚物1为二维网状结构,基于丰富的氢键作用扩展形成三维超分子网结构。配合物2为双核结构,相邻的双核结构通过吡啶环之间的π…π堆积作用和氢键作用扩展为二维超分子网状结构。配聚物1在紫外光照射下对染料甲基橙(MO)的降解具有光催化活性,对紫外光催化具有良好的稳定性。此外还研究了配合物2的荧光性质和配合物1~2的热稳定性。  相似文献   

7.
Tridentate dianionic arylsulfide free ligands [ArNHCH(2)C(6)H(4)NHC(6)H(4)-2-SPh] (Ar = Ph (3a); Ar = 2,4,6-trimethylphenyl (3b); Ar = 2,6-diisopropylphenyl (3c)) have been prepared by reduction of the corresponding imine compounds [ArN[double bond, length as m-dash]CHC(6)H(4)NHC(6)H(4)-2-SPh] (Ar = Ph (2a); Ar = 2,4,6-trimethylphenyl (2b); Ar = 2,6-diisopropylphenyl (2c)) with LiAlH(4) in high yields. Reactions of TiCl(4) with the tridentate dianionic arylsulfide free ligands (3a-3c) afford five-coordinate and four-coordinate titanium complexes [κS, κ(2)N-(ArNHCH(2)C(6)H(4)NHC(6)H(4)-2-SPh)TiCl(2)] (Ar = Ph (4a); Ar = 2,4,6-trimethylphenyl (4b)] and [κ(2)N-(ArNHCH(2)C(6)H(4)NHC(6)H(4)-2-SPh)TiCl(2)] (Ar = 2,6-diisopropylphenyl (4c)], respectively. The molecular structures of compounds 2b, 2c, 3b and 3c·HCl have been characterized by single crystal X-ray diffraction analyses. Complexes 2a-4c are characterized by IR,(1)H-NMR spectra, and elemental analysis. EXAFS spectroscopy performed on complexes 4b and 4c reveals the expected different coordination geometry due to steric hindrance effect. When activated by excess methylaluminoxane (MAO), 4a-4c can be used as catalysts for ethylene polymerization and exhibit moderate to good activities.  相似文献   

8.
Yam M  Tsang CW  Gates DP 《Inorganic chemistry》2004,43(12):3719-3723
The secondary vinylphosphines Ar(F)P(H)C(R)[double bond]CH(2) [2a, Ar(F) = 2,6-(CF(3))(2)C(6)H(3), R = CH(3); 2b, Ar(F) = 2,6-(CF(3))(2)C(6)H(3), R = C(6)H(5); 2c, Ar(F) = 2,4,6-(CF(3))(3)C(6)H(2), R = CH(3)] were prepared by treating the corresponding dichlorophosphine Ar(F)PCl(2) (1) with H(2)C[double bond]C(R)MgBr. In the presence of catalytic base (DBU or DABCO) the vinylphosphines (2a-c) undergo quantitative 1,3-hydrogen migration over 3 d to give stable and isolable phosphaalkenes Ar(F)P=C(R)CH(3) (3a, Ar(F) = 2,6-(CF(3))(2)C(6)H(3), R = CH(3); 3b, Ar(F) = 2,6-(CF(3))(2)C(6)H(3), R = C(6)H(5); 3c, Ar(F) = 2,4,6-(CF(3))(3)C(6)H(2), R = CH(3)). Under analogous conditions, only 90% conversion is observed in the base-catalyzed rearrangement of MesP(H)C(CH(3))[double bond]CH(2) to MesP[double bond]C(CH(3))(2). Presumably, the increase in acidity of the P-H group when electron-withdrawing groups are employed (i.e. 2a-c) favors quantitative rearrangement to the phosphaalkene tautomer (3a-c). Thus, the double-bond migration reaction is a convenient and practical method of preparing new phosphaalkenes with C-methyl substituents.  相似文献   

9.
Reaction of {Li(THF)Ar'MnI(2)}(2) (Ar' = C(6)H(3)-2,6-(C(6)H(2)-2,6-(i)Pr(3))(2)) with LiAr', LiC≡CR (R = (t)Bu or Ph), or (C(6)H(2)-2,4,6-(i)Pr(3))MgBr(THF)(2) afforded the diaryl MnAr'(2) (1), the alkynyl salts Ar'Mn(C≡C(t)Bu)(4){Li(THF)}(3) (2) and Ar'Mn(C≡CPh)(3)Li(3)(THF)(Et(2)O)(2)(μ(3)-I) (3), and the manganate salt {Li(THF)}Ar'Mn(μ-I)(C(6)H(2)-2,4,6-(i)Pr(3)) (4), respectively. Complex 4 reacted with one equivalent of (C(6)H(2)-2,4,6-(i)Pr(3))MgBr(THF)(2) to afford the homoleptic dimer {Mn(C(6)H(2)-2,4,6-(i)Pr(3))(μ-C(6)H(2)-2,4,6-(i)Pr(3))}(2) (5), which resulted from the displacement of the bulkier Ar' ligand in preference to the halogen. The reaction of the more crowded {Li(THF)Ar*MnI(2)}(2) (Ar* = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-(i)Pr(3))(2)) with Li(t)Bu gave complex Ar*Mn(t)Bu (6). Complex 1 is a rare monomeric homoleptic two-coordinate diaryl Mn(II) complex; while 6 displays no tendency to eliminate β-hydrogens from the (t)Bu group because of the stabilization supplied by Ar*. Compounds 2 and 3 have cubane frameworks, which are constructed from a manganese, three carbons from three acetylide ligands, three lithiums, each coordinated by a donor, plus either a carbon from a further acetylide ligand (2) or an iodide (3). The Mn(II) atom in 4 has an unusual distorted T-shaped geometry while the dimeric 5 features trigonal planar manganese coordination. The chloride substituted complex Li(2)(THF)(3){Ar'MnCl(2)}(2) (7), which has a structure very similar to that of {Li(THF)Ar'MnI(2)}(2), was also prepared for use as a possible starting material. However, its generally lower solubility rendered it less useful than the iodo salt. Complexes 1-7 were characterized by X-ray crystallography and UV-vis spectroscopy. Magnetic studies of 2-4 and 6 showed that they have 3d(5) high-spin configurations.  相似文献   

10.
The reactions of cis-[Pt(2)(4-MeC(6)H(4))(4)(μ-SEt(2))(2)] with bifunctional ligands ArCH=NCH(2)(2-XC(6)H(4)) containing a C-X bond at the ortho positions of the benzyl ring (Ar = 4-ClC(6)H(4), X = Br (1d); Ar = 2,4,6-(CH(3))(3)C(6)H(2), X = Br (1e); Ar = 2,4,6-(CH(3))(3)C(6)H(2), X = Cl (1f); Ar = 2-CH(3)C(6)H(4), X = Br (1h); Ar = 2,6-F(2)C(6)H(3), X = Br (1i)) in refluxing toluene were studied. Several types of platinum(II) cyclometallated compounds containing a biaryl linkage were obtained: i) endo-five-membered with a Pt-C(sp(2)) bond (2d, 2h), ii) endo-six-membered with a Pt-C(sp(3)) bond (2e, 2f), and iii) exo-five membered with a Pt-C(sp(2)) bond (2i). The formed biaryl linkage involves the metallated ring for 2i and the non-metallated ring for the endo-metallacycles. The reaction of compounds 2 with PPh(3) produced the corresponding phosphine derivatives, some of which (3d, 3e, 3h and 3i) were characterised crystallographically. In addition, compound [PtBr{2-CH(3)C(6)H(3)C(6)H(4)CH=NCH(2)(2-C(6)H(4)Br)}SEt(2)] (2c) containing a seven-membered endo-metallacycle was also obtained and characterised crystallographically.  相似文献   

11.
Rearrangement of ArPCPAr (Ar = 2,4,6-But3C6H2) involving hydrogen migration from carbon to phosphorus occurs on heating with [W(CO)5(THF)], but with [Fe3(CO)12] an unusual carbon to carbon hydrogen migration results.  相似文献   

12.
Treatment of the four-coordinate vanadium neopentylidene (Nacnac)V=CHtBu(I) (Nacnac- = [Ar]NC(Me)CHC(Me)N[Ar], Ar = 2,6-iPr2C6H3) with a bulky primary lithium phosphide LiPHR (R = 2,4,6-iPr3C6H2, 2,4,6-tBu3C6H2) leads to alpha-hydrogen migration concomitant with the formation of a four-coordinate vanadium complex containing a terminal phosphinidene functionality (Nacnac)V=PR(CH2tBu). The crystal structures for the vanadium phosphinidene complexes prepared herein were determined by single-crystal X-ray diffraction methods. Solution EPR and magnetic measurements of the vanadium phosphinidenes are also in accordance with such systems containing a V(IV) metal center, and DFT calculations indicate the V=P bond to be stabilized through a pseudo Jahn-Teller effect of second order.  相似文献   

13.
The addition of LiPh to Ar*SnCl (Ar* = C6H3-2,6-Trip2; Trip = C6H2-2,4,6-iPr3) at low temperature afforded the Sn(1)-Sn(III) species Ar*SnSnPh2Ar*, which exists in equilibrium with the Sn(II) compound Ar*SnPh. It is the first example of a room-temperature equilibrium of compounds involving main group elements in different oxidation states.  相似文献   

14.
The reduction of Ar*GeCl (Ar* = C6H3-2,6-Trip2; Trip = C6H2-2,4,6-i-Pr3) with one equivalent of potassium leads to the formation of a germanium analogue of an alkyne Ar*GeGeAr* 1; reaction of 1 with 2,3-dimethyl-1,3-butadiene yields [Ar*Ge(CH2C(Me)C(Me)CH2)CH2C(Me)=]2 2, which was structurally characterized.  相似文献   

15.
The secondary phosphines Ar(C6H4-2-CH2NMe2)PH [Ar = mes (3), Tripp (4)] may be isolated in good yields from reactions between Li(C6H4-2-CH2NMe2) and the respective dichlorophosphine, followed by reduction with LiAlH4 [mes = 2,4,6-Me3C6H2, Tripp = 2,4,6-Pri3C6H2]. Metalation of either 3 or 4 with BunLi gives the corresponding lithium compound; the lithium derivative of 3 was isolated as the separated ion pair complex [Li(12-crown-4)2][(mes)(C6H4-2-CH2NMe2)P].THF (5). The lithium complexes Ar(C6H4-2-CH2NMe2)PLi undergo metathesis reactions with either NaOBut or KOBut to give the heavier alkali metal phosphides {Ar(C6H4-2-CH2NMe2)P}M.1/2OEt2 [Ar = mes, M = Na (8), K (9); Ar = Tripp, M = K (10)]. Metathesis reactions between 9 and LaI3(THF)4 give only intractable products; in contrast, a metathesis reaction between 10 and LaI3(THF)4 yields the heteroleptic complex {(Tripp)(C6H4-2-CH2NMe2)P}2LaI (11). Compound 11 reacts cleanly with K{N(SiMe3)2} to give {(Tripp)(C6H4-2-CH2NMe2)P}2La{N(SiMe3)2} (14). Compounds 3-5, 8-11 and 14 have been characterised by multi-element NMR spectroscopy; in addition, compounds 5, 11 and 14 have been studied by X-ray crystallography.  相似文献   

16.
The mono-base-stabilized 1,2-diboranylidenehydrazine derivatives featuring a 1,3-dipolar BNN skeleton are obtained by dehydrobromination of [ArB(Br)NH]2 (Ar = 2,6-diphenylphenyl (Dpp), Ar = 2,6-bis(2,4,6-trimethylphenyl)phenyl (Dmp) or Ar = 2,4,6-tri-tert-butylphenyl (Mes*)) with N-heterocyclic carbenes (NHCs). Depending on the Ar substituents, such species can be isolated as a crystalline solid (Ar = Mes*) or generated as reactive intermediates undergoing spontaneous intramolecular aminoboration of the proximal arene rings via [3 + 2] cycloaddition (Ar = Dpp or Dmp). The latter reactions showcase the 1,3-dipolar reactivity toward unactivated arenes at ambient temperature. In addition, double cycloaddition of the isolable BNN species with two CO2 molecules affords a bicyclic species consisting of two fused five-membered BN2CO rings. The electronic structures of these BNN species and the mechanisms of these cascade reactions are interrogated through density functional theory (DFT) calculations.

The mono-base-coordinated 1,2-diboranylidenehydrazine derivatives exhibiting the BNN-1,3-dipolar reactivity toward unactivated arenes and CO2 are reported.  相似文献   

17.
A series of new star-shaped trinuclear Ru(II) complexes of imidazo[4,5-f][1,10]phenanthroline derivatives, [{Ru(bpy)(2)}(3){μ-mes(1,4-phO-Izphen)(3)}](ClO(4))(6)·4H(2)O (6), [{Ru(phen)(2)}(3){μ-mes(1,4-phO-Izphen)(3)}](ClO(4))(6)·3H(2)O (7), [{Ru(bpy)(2)}(3){μ-mes(1,2-phO-Izphen)(3)}](ClO(4))(6)·4H(2)O (8), and [{Ru(phen)(2)}(3){μ-mes(1,2-phO-Izphen)(3)}](ClO(4))(6)·3H(2)O (9) [mes(1,4-phO-Izphen)(3) (4) = 2,4,6-tri methyl-1,3,5-tris(4-oxymethyl-1-yl(1H-imidazo-2-yl-[4,5-f][1,10]phenanthroline)phenyl)benzene and (mes(1,2-phO-Izphen)(3) (5) = 2,4,6-trimethyl-1,3,5-tris(2-oxymethyl-1-yl(1H-imidazo-2-yl[4,5-f][1,10]phenanthroline)phenyl)benzene] have been synthesized and characterized. Their photophysical and electrochemical properties have also been studied. The core molecule, 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene (1) and the trialdehyde intermediate, 2,4,6-trimethyl-1,3,5-tris(4-oxymethyl-1-formylphenyl)benzene (2) are characterized by single crystal X-ray diffraction: triclinic, P1[combining macron]. The complexes 6-9 exhibit Ru(II) metal centered emission at 618, 601, 615, and 605 nm, respectively, in fluid solution at room temperature. The emission profile and emission maxima are similar and independent of the excitation wavelength for each complex. The complexes 6-9 undergo metal centered oxidation and the E(1/2) values for the Ru(II)/Ru(III) redox couples are 1.33, 1.34, 1.35, and 1.35 V versus Ag/Ag(+), respectively, which are cathodically shifted with respect to that of the mononuclear complex [Ru(bpy)(2)(PIP)](2+) (PIP = 2-phenylimidazo[4,5-f][1,10]phenanthroline). The study demonstrates the versatility of the highly symmetric trinucleating imidazo[4,5-f][1,10]phenanthroline-based core ligands 4 and 5 in forming trinuclear Ru(II) complexes.  相似文献   

18.
Abstract

Synthesis of the first donor-stabilized phosphanetriylphosphonium ion [Ar?PP<-PPh3]+ via trifluoromethanesulfonic acid (TfOH) induced reaction of P-dialkylaminodiphosphenes, Ar?P=PNR2 (Ar? = 2,4,6-tri-tert-butylphenyl) with triphenylphosphane has been described.  相似文献   

19.
Reaction of TlCl and [LiN(Me)Ar(Mes)2](2) [Ar(Mes)2 = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-Me(3))(2)] in Et(2)O generated the thallium amide, TlN(Me)Ar(Mes)2 (1). X-ray data showed that it has a monomeric structure with an average Tl-N distance of 2.364(3) Angstroms. There was also a Tl-arene approach [Tl-centroid = 3.026(2) Angstroms (avg)] to a flanking mesityl ring from the terphenyl substituent. DFT calculations showed that this interaction is weak and supported essentially one coordination for thallium. The electronic spectrum of 1 is hypsochromically shifted in comparison to the monomeric TlAr(Trip)2 (Trip = C(6)H(2)-2,4,6-Pr(i)(3)).  相似文献   

20.
Trifluoro(2,4,6-tri-t-butylphenyl)silane (ArSiF3, 2), the first silicon compound containing the very bulky 2,4,6-tri-t-butylphenyl group, has been prepared by treatment of ArLi with silicon tetrafluoride. Reaction of 2 with several organolithium compounds gives the corresponding diorganyl derivatives Ar(R)SiF2, R = Me, t-Bu, and Ar, respectively. The fluorosilanes are easily converted into the air-stable hydrosilanes ArSiH3 and Ar(R)SiH2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号