首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
We study the structure of neutron-rich calcium isotopes in the shell model with realistic interactions. The CD-Bonn and Kuo-Brown (KB) interactions are used. As these interactions do not include the three-body force, their direct use leads to poor results. We tested whether the adjustment of the single particle energies (SPEs) would be sufficient to include the three-body correlations empirically. It turns out that the CD-Bonn interaction, after the adjustment of SPEs, gives good agreement with the experimental data for the energies and spectroscopy. For the KB interaction, both the SPEs and monopole terms require adjustments. Thus, the monopole problem is less serious for modern realistic interactions which include perturbations up to the third order. We also tested the effect of the non-central force on the shell structure. It is found that the effect of the tensor force in the CD-Bonn interaction is weaker than in the KB interaction.  相似文献   

2.
S K Agarwal  M P Verma 《Pramana》1973,1(4):172-176
The lattice dynamics of GaO has been studied on the basis of the three body force shell model, which takes into account the effect of many body interactions in the lattice potential. The dispersion curves obtained by plottingω vsq agree fairly well with the experiments. It is concluded that the value of the molecular electronic polarizability of the solid must be must small than that determined experimentally which suggests that the interaction system in the solid may have a substantial covalent character.  相似文献   

3.
The realistic shell model Hamiltonians, USD and GXPF1A, have been transformed from the particle-particle (normal) representation to the particle-hole representation (multipole-multipole) by using the known formulation in Ref. [1]. The obtained multipole-multipole terms were compared with the known spherical tensor forces, including the coupled ones. It is the first time the contributions of the coupled tensor forces to the shell model Hamiltonian have been investigated. It has been shown that some coupled-tensor forces, such as r2Y2σ]1, also give important contributions to the shell model Hamiltonian.  相似文献   

4.
5.
Ab initio approaches are among the most advanced models to solve the nuclear many-body problem. In particular, the no-core–shell model and many-body perturbation theory have been recently extended to the Gamow shell model framework, where the harmonic oscillator basis is replaced by a basis bearing bound, resonance and scattering states, i.e. the Berggren basis. As continuum coupling is included at basis level and as configuration mixing takes care of inter-nucleon correlations, halo and resonance nuclei can be properly described with the Gamow shell model. The development of the no-core Gamow shell model and the introduction of the $\hat{\bar{Q}}$-box method in the Gamow shell model, as well as their first ab initio applications, will be reviewed in this paper. Peculiarities compared to models using harmonic oscillator bases will be shortly described. The current power and limitations of ab initio Gamow shell model will also be discussed, as well as its potential for future applications.  相似文献   

6.
电子壳模型势函数在离子晶体的原子级计算机模拟中有广泛应用,其势参数主要通过拟合晶体的实验数据或电子结构数据得到.提出了通过拟合双原子分子的量子化学从头计算电子结构数据来获得该势函数的方法,并由H2分子的电子结构数据建立了H原子间的电子壳模型势函数.此外,还应用该势函数对H+2分子离子进行了计算.该势函数拟合方案更适合于共价键型的分子.  相似文献   

7.
Focusing on the importance of the tensor force in the effective interaction, we investigate the structure of unstable nuclei around N=28 with large-scale shell-model calculations. From the analysis of the spin-tensor decomposition for some interactions, the tensor force in the effective interaction should be close to the π+ ρ force, whereas it is much weaker in the Millener-Kurath (MK) interaction which is often used as the cross-shell interaction. The significance of the tensor force appears in the structure around 42Si: the proper tensor force predicts that it is deformed contrary to the result from MK.  相似文献   

8.
电子壳模型势函数在离子晶体的原子级计算机模拟中有广泛应用,其势参数主要通过拟合晶体的实验数据或电子结构数据得到.提出了通过拟合双原子分子的量子化学从头计算电子结构数据来获得该势函数的方法,并由H2分子的电子结构数据建立了H原子间的电子壳模型势函数.此外,还应用该势函数对H+2分子离子进行了计算.该势函数拟合方案更适合于共价键型的分子. 关键词: 电子壳模型势 参数拟合 共价键 2分子')" href="#">H2分子  相似文献   

9.
Fundamental understandings of surface chemistry and catalysis of solid catalysts are of great importance for the developments of efficient catalysts and corresponding catalytic processes, but have been remaining as a challenge due to the complex nature of heterogeneous catalysis. Model catalysts approach based on catalytic materials with uniform and well-defined surface structures is an effective strategy. Single crystals-based model catalysts have been successfully used for surface chemistry studies of solid catalysts, but encounter the so-called “materials gap” and “pressure gap” when applied for catalysis studies of solid catalysts. Recently catalytic nanocrystals with uniform and well-defined surface structures have emerged as a novel type of model catalysts whose surface chemistry and catalysis can be studied under the same operational reaction condition as working powder catalysts, and they are recognized as a novel type of model catalysts that can bridge the “materials gap” and “pressure gap” between single crystals-based model catalysts and powder catalysts. Herein we review recent progress of surface chemistry and catalysis of important oxide catalysts including CeO2, TiO2 and Cu2O acquired by model catalysts from single crystals to nanocrystals with an aim at summarizing the commonalities and discussing the differences among model catalysts with complexities at different levels. Firstly, the complex nature of surface chemistry and catalysis of solid catalysts is briefly introduced. In the following sections, the model catalysts approach is described and surface chemistry and catalysis of CeO2, TiO2 and Cu2O single crystal and nanocrystal model catalysts are reviewed. Finally, concluding remarks and future prospects are given on a comprehensive approach of model catalysts from single crystals to nanocrystals for the investigations of surface chemistry and catalysis of powder catalysts approaching the working conditions as closely as possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号