首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic monolithic stationary phases have been synthesized in UV-transparent fused-silica capillaries, which have been used as test format of microfabricated device channels. The columns have been prepared by in situ polymerization of butyl acrylate, lauryl acrylate, 1,3-butanediol diacrylate, and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) in a ternary porogenic solvent. The resulting stationary phases have been tested in capillary electrochromatography and exhibited reversed-phase chromatography behavior toward neutral solutes. Van Deemter plots of phenylureas and polycyclic aromatic hydrocarbons, selected as model analytes, have been determined to study the influence of various polymerization and separation parameters on properties of the monoliths. The amount of AMPS and the nature of monomers in the polymerization solution have been thus adjusted. It has been observed that the ionic strength of the mobile phase may affect significantly the efficiency of the separation. The effect of the percentage of acetonitrile in the mobile phase on efficiency and permeability of the organic monoliths has also been investigated. Efficiencies greater than 300,000 plates/m have been obtained with the test compounds. Stability and reproducibility have been extensively studied.  相似文献   

2.
Organic monolithic stationary phases were synthesized in fused-silica capillaries. They were prepared by in situ polymerization under UV irradiation of various alkyl acrylates, 1,3-butanediol diacrylate, and 2-acrylamido-2-methyl-1-propanesulfonic acid in a ternary porogenic solvent. The resulting stationary phases were tested in CEC. The influence of UV irradiation energy on the resulting separative performances of the monoliths was studied. It was thus demonstrated that the use of hexyl acrylate rather than butyl acrylate and lauryl methacrylate gives highly efficient monoliths (more than 300 000 plates per meter) with optimized EOF. It was also confirmed that the mobile phase ionic strength may affect significantly the separation efficiency. The influence of the nature of the mobile phase organic modifier (ACN or methanol) on EOF, retention, efficiency, and selectivity was studied and differences were observed. Finally, the performances of monolithic stationary phases developed and optimized for CEC separations were evaluated in nanoLC.  相似文献   

3.
Methacrylate monolithic stationary phases were produced in fused-silica chips by UV initiation. Poly(butyl methacrylate-co-ethylene dimethacrylate) (BMA) and poly(lauryl methacrylate-co-ethylene dimethacrylate) (LMA) monoliths containing 30, 35 and 40% monomers were evaluated for the separation of peptides under gradient conditions. The peak capacity was used as an objective tool for the evaluation of the separation performance. LMA monoliths of the highest density gave the highest peak capacities (≈40) in gradients of 15 min and all LMA monoliths gave higher peak capacities than the BMA monoliths with the same percentage of monomers. Increasing the gradient duration to 30 min did not increase the peak capacity significantly. However, running fast (5 min) gradients provides moderate peak capacities (≈20) in a short time. Due to the system dead volume of 1 μL and the low bed volume of the chip, early eluting peptides migrated over a significant part of the column during the dwell time under isocratic conditions. It was shown that this could explain an increased band broadening on the monolithic stationary phase materials used. The effect is stronger with BMA monoliths, which partly explains the inferior performance of this material with respect to peak capacity. The configuration of the connections on the chip appeared to be critical when fast analyses were performed at pressures above 20 bar.  相似文献   

4.
To improve selectivity, chemical stability, and separation efficiency of chromatography, many past papers reported on nanoparticles (NPs) being used as stationary phases in chromatography. This article covers applications of NPs, including carbon nanotubes, fullerenes, gold NPs, silica NPs, zirconia NPs, and titanium-oxide NPs, as stationary phases in gas chromatography, high-performance liquid chromatography, capillary electrophoresis and capillary electrochromatography.We discuss the advantages and the disadvantages of nanomaterials as stationary phases compared to other materials, including traditional stationary phases. We also discuss future possibilities for developing nanomaterial-based stationary phases.  相似文献   

5.
6.
Liu Y  Heyden YV  Mangelings D 《Electrophoresis》2012,33(11):1613-1623
Chiral monolithic silica capillary columns were prepared by immobilization of amylose-3,5-dimethylphenylcarbamate (ADMPC) bearing a small fraction of 3-(triethoxysilyl)propyl residues through intermolecular polycondensation of the triethoxysilyl groups. The obtained columns were used for chiral separations in capillary electrochromatography (CEC). The effects of the silica monolith nature and the used chiral selector concentration on the resulting enantiomeric separations were investigated. Fifteen chiral compounds, including acidic, neutral, and basic substances were evaluated and twelve showed partial or baseline separation at some of the different conditions tested. These results demonstrated the promising applicability of ADMPC-immobilized monolithic silica columns in CEC enantioseparations, but also revealed the need for further improvements on the level of baseline separations and efficiencies.  相似文献   

7.
Summary A two-step, in situ synthesis and bonding reaction of monomeric alkyl chemically bonded stationary phases is described. Silane ligands are first synthesized from the corresponding terminal olefin and dimethylhydrochlorosilane using a hexachloroplatinic acid catalyst. The platinum may then be removed if desired by adsorption to activated carbon. Bonding to silica gel is then carried out in the normal manner directly, without further purification. The resulting bonded phase is equivelant both chemically and chromatographically to phases produced in the normal manner using vacuum-distilled or otherwise purified silanes. This approach provides a simple protocol for the synthesis of novel silanes not commericially available, or of silanes not sufficiently volatile for purification by vacuum distillation.  相似文献   

8.
Hilder EF  Svec F  Fréchet JM 《Electrophoresis》2002,23(22-23):3934-3953
This review summarizes the contributions of a number of groups working in the rapidly growing area of monolithic columns for capillary electrochromatography (CEC), with a focus on those prepared from synthetic polymers. Monoliths have quickly become a well-established stationary phase format in the field of CEC. The simplicity of their in situ preparation method as well as the good control over their porous properties and surface chemistries make the monolithic separation media an attractive alternative to capillary columns packed with particulate materials. A wide variety of approaches as well as materials used for the preparation of the monolithic stationary phases are detailed. Their excellent chromatographic performance is demonstrated by numerous separations of different analytes.  相似文献   

9.
Berthod A  Nair UB  Bagwill C  Armstrong DW 《Talanta》1996,43(10):1767-1782
In this work, synthetic and natural chiral selectors were combined to form two different chiral stationary phases (CSPs). These were made by bonding R- or S-(1-naphthylethyl) carbamate (R-NEC or S-NEC)-derivatized vancomycin molecules to a silica gel support. The two CSPs were evaluated using a set of 60 enantiomeric pairs. The results were compared to the ones obtained with the commercial underivatized vancomycin CSP. Three Chromatographic modes were used: (i) the normal-phase mode using a nonpolar mobile phase with different ratios of hexane and ethanol; (ii) the reversed-phase mode with hydro-organic mobile phases; and (iii) the polar aprotic organic mode with nonaqueous acetonitrile plus small amounts of methanol and an acid and/or base to control retention and selectivity. It is shown that the polarity of the underivatized vancomycin phase is higher than that of the two R- and S-NEC-derivatized CSPs. In the pH range 4-7, there is no ionization change of the chiral selector for the three CSPs. 43% of the studied compounds were resolved by the NEC-derivatized phases when they could not be resolved by the vancomycin CSP. However, the enantiorecognition for 12% of the compounds on the native vancomycin CSP was lost upon NEC derivatization. 45% of the studied compounds were resolved by the NEC-derivatized and native CSPs. The NEC derivatization procedure may block some useful active sites on the vancomycin molecule. Also, the R- and S-NEC moieties are chiral themselves and can contribute additional interaction sites not available on the native vancomycin molecule.  相似文献   

10.
A novel cationic monolithic stationary phase based on the co-polymerization of pentaerythritol diacrylate monostearate (PEDAS) with a selected quaternary amine acrylic monomer was designed for performing capillary electrochromatography at high flow velocity. While PEDAS functioned as both the ligand provider and the cross-linker, the quaternary amine acrylic monomer was introduced to control the magnitude of the electroosmotic flow (EOF). The fabrication of the cationic stearyl-acrylate monolith (designated as cationic C17 monolith) with controlled porosity was achieved by free radical polymerization using the initiator 2,2'-azobisisobutyronitrile in the presence of a ternary porogenic solvent composed of cyclohexanol, ethylene glycol and water. Four different quaternary amine acrylic monomers were investigated in order to find the optimum monomer for achieving maximum electroosmotic flow (EOF) velocity. Both photo- and thermally-initiated polymerization proved effective in producing the cationic C17 monolith, and the best monolith was achieved when [2-(acryloyloxy)ethyl]trimethyl ammonium methyl sulfate (AETA) was used as the quaternary amine acrylic monomer. Although the zeta potential of the resulting cationic C17 monolith is positive with respect to water, the magnitude and direction of the EOF was markedly affected by the nature of the electrolyte in the mobile phase. Consequently, anodal, zero or cathodal EOF was observed depending on the nature of the electrolyte, and this was attributed to the adsorption of the ionic components of the electrolyte on to the solid stationary phase, which is characterized by its amphiphilic nature consisting of C17 chains, ester functions, hydroxyl groups and quaternary amine moieties. Optimized PEDAS-AETA monoliths yielded columns with high separation efficiency and allowed rapid separations on the time scale of seconds to be achieved with short capillaries.  相似文献   

11.
Mistry K  Krull I  Grinberg N 《Electrophoresis》2003,24(11):1753-1763
We report the successful size-based separations of large, neutral polysaccharides using capillary electrochromatography (CEC). As the polysaccharides possessed little chromophore for photometric detection, two separate approaches were taken. In the first approach, indirect detection was combined with size-exclusion chromatography using a sulfonated polystyrene/divinylbenzene stationary phase. The separations were performed using a 300 A pore size stationary phase under aqueous conditions. Non-size based interactions were minimal using this material, resulting in an effective calibration range of molecular masses 180 to 112 000 g.mol(-1) for pullulans. In the second approach, the polysaccharides were derivatized with phenylisocyanate and were subsequently separated on columns made using a combination of high capacity ion-exchanger and a neutral polystyrene/divinylbenzene material of various pore sizes. The sulfonated ion-exchange phase provided the electroosmotic flow, while the mixed pore size material provided the extended calibration range. The linear range for this primarily nonaqueous system using tetrahydrofuran was determined to be from molecular masses 738 to 404 000 g.mol(-1) of the original, untagged pullulan. This approach overcame the limited solubility issue associated with analysis of some polysaccharides. Analysis of pullulan and amylose samples by CEC correlated well with results obtained by conventional high-performance liquid chromatography (HPLC). The size-exclusion electrochromatographic separations provide an alternative mode for determining the relative molecular weights of polysaccharides with reduced sample and solvent consumption, as well as analysis times.  相似文献   

12.
Summary Packings and stationary phases applied to high resolution separations of proteins, enzymes, and nucleic acids must satisfy a series of distinct criteria that are different from those usually required by HPLC of low molecular weight non-biologically active analytes. These requirements have been met through substantial improvements in classical gel media together with novel developments in silica supports, and have led to a family of products with tailor-made and reproducible properties. Supports consisting of cross-linked organic gels, and inorganic materials (mostly silicas) are now available with graduated particle sizes, pore sizes, porosities and surface areas as well as non-porous beads. A whole range of stationary phases, such as reversed phase, hydrophobic interaction, ion exchanger and affinity packings, were designed for application as chemical sensors for biopolymer recognition in adsorptive chromatography. The phase systems are operated in the gradient mode, giving high resolution and high peak capacities. In addition, aqueous liquid-liquid partitioning systems have been developed for the fractionation of proteins and nucleic acids. Size exclusion media complete the set of HPLC variants enabling a discrimination of proteins according to their size and shape in an isocratic elution mode. Basically, protein purification and isolation is a multistage process where-by the HPLC variants are combined in a logistic sequence, utilizing the different selectivities of the phase systems and thus maximising resolution, speed and throughput.  相似文献   

13.
Monolithic capillary columns have been prepared in fused‐silica capillaries by radical co‐polymerization of ethylene dimethacrylate and butyl methacrylate in the presence of porogen solvent mixtures containing various concentration ratios of 1‐propanol, 1,4‐butanediol, and water with azobisisobutyronitrile as the initiator of the polymerization reaction. The through pores in organic polymer monolithic columns can be characterized by “equivalent permeability particle size”, and the mesopores with stagnant mobile phase by “equivalent dispersion particle size”. Increasing the concentration of propanol in the polymerization mixture diminishes the pore volume and size in the monolithic media and improves the column efficiency, at a cost of decreasing permeability. Organic polymer monolithic capillary columns show similar retention behaviour to packed alkyl silica columns for compounds with different polarities characterized by interaction indices, Ix, but have different methylene selectivities. Higher concentrations of propanol in the polymerization mixture increase the lipophilic character of the monolithic stationary phases. Best efficiencies and separation selectivities were found for monolithic columns prepared using 62–64% propanol in the porogen solvent mixture. To allow accurate characterization of the properties of capillary monolithic columns, the experimental data should be corrected for extra‐column contributions.  相似文献   

14.
Capillary electrochromatographic (CEC) separations of unsaponifiable lipids, tocopherols (T), tocotrienols (T3), and plant sterols were studied under various conditions. Investigated stationary phases include pentafluorophenylsilica (PFPS), triacontylsilica (TCS), and octadecylsilica (ODS) phases. A baseline separation of four sterols (ergosterol, lanosterol, sitosterol and stigmasterol) on ODS was achieved and their elution order was found to be dictated by side-chain structures. CEC of the tocol-derived compounds on PFPS in aqueous methanol yielded the most satisfactory results with complete resolution of all components eluting in the order deltaT3>beta3>gammaT3>epsilonP>alphaT3>deltaT>zeta2T>betaT>gammaT>alphaT, while a reversal in elution of the epsilonT-alphaT3 pair was observed in aqueous acetonitrile. CEC with a TCS phase in non-aqueous methanol led to a different elution pattern deltaT3>gammaT3>betaT3>alphaT3epsilonT>deltaT>(zeta2+gamma)T>betaT>alphaT, despite favorable resolution of the (gamma-zeta2)T pair along with the observation of inseparable(beta-gamma)T and (beta-gamma)T3 pairs in non-aqueous dimethylformamide. Non-aqueous acetonitrile mobile phases provided unique selectivity for the (gamma-zeta2)T pair and isomer separations on TCS. Variations in separation and retention factors of relevant antioxidant species with CEC variables were evaluated. Examples of CEC quantification of unsaponifiable fractions of rice bran oils and soybean oils are presented.  相似文献   

15.
Three dihalogenic solvents differing in the length of alkyl chain (1,2‐dichloroethane, 1,4‐dichlorobutane, and 1,6‐dichlorohexane) with three Friedel–Crafts alkylation catalysts varying in reactivity (AlCl3, FeCl3, and SnCl4) have been used to prepare hypercrosslinked poly(styrene‐co‐vinylbenzyl chloride‐co‐divinylbenzene) columns. Hydrodynamic characteristics as well as column efficiency and mass transfer resistance were tuned by the combination of swelling solvent and alkylation reaction catalyst in the modification mixture. The column swelled in 1,6‐dichlorohexane and hypercrosslinked in the presence of AlCl3 provided the highest column efficiency and enabled fast isocratic separations of small molecules in a RP mode. To uncover factors controlling the efficiency of hypercrosslinked monolithic columns, we have studied pore volume distribution of prepared columns. We found that column efficiency increases with the higher pore volume of pores smaller than 2 nm.  相似文献   

16.
Bedair M  El Rassi Z 《Electrophoresis》2002,23(17):2938-2948
A novel monolithic stationary phase having long alkyl chain ligands (C17) was introduced and evaluated in capillary electrochromatography (CEC) of small neutral and charged species. The monolithic stationary phase was prepared by the in situ copolymerization of pentaerythritol diacrylate monostearate (PEDAS) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) in a ternary porogenic solvent consisting of cyclohexanol/ethylene-glycol/water. While AMPS was meant to support the electroosmotic flow (EOF) necessary for transporting the mobile phase through the monolithic capillary, the PEDAS was introduced to provide the nonpolar sites for chromatographic retention. Monolithic columns at various EOF velocities were readily prepared by conveniently adjusting the amount of AMPS in the polymerization solution as well as the composition of the porogenic solvent. The monolithic stationary phases thus obtained exhibited reversed-phase chromatography behavior toward neutral solutes and yielded a relatively strong EOF. For charged solutes (e.g., dansyl amino acids), nonpolar as well as electrostatic interaction/repulsion with the monoliths were observed in addition to electrophoretic migration. Therefore, for charged solutes, selectivity and migration can be readily manipulated by changing various parameters including the nature of the monolith and the composition of the mobile phase (e.g., pH, ionic strength and organic modifier). Ultrafast separation on the time scale of seconds of 17 different charged and neutral pesticides and metabolites were performed using short capillary columns of 8.5 cm x 100 microm ID.  相似文献   

17.
Monolithic columns for capillary electrochromatography are receiving quite remarkable attention. This review summarizes results excerpted from numerous papers concerning this rapidly growing area with a focus on monoliths prepared from synthetic polymers. Both the simplicity of the in situ preparation and the large number of readily available chemistries make the monolithic separation media a vital alternative to capillary columns packed with particulate materials. Therefore, they are now a well-established stationary phase format in the field of capillary electrochromatography. A wide variety of synthetic approaches as well as materials used for the preparation of the monolithic stationary phases are presented in detail. The analytical potential of these columns is demonstrated with separations involving various families of compounds and different chromatographic modes.  相似文献   

18.
This review covers the recent development of stationary phases for chip-based gas chromatography (GC). Portable systems for rapid and reliable analysis are urgently needed. One way to achieve this is to miniaturize the entire analysis. Because the column is the central component of the GC system and determines the feasibility and quality of separation, this review focuses on stationary phases reported in the literature and their use in different fields during the last two decades, with emphasis on different methods for introducing the stationary phase into the GC column.  相似文献   

19.
A novel single-step sol-gel approach for the preparation of beta-CD-bonded silica monolithic electrochromatographic columns is established. The porous silica networks were fabricated inside fused-silica capillaries using sol-gel processing of tetramethoxysilane and an organfunctional silicon alkoxide that contains beta-CD. Scanning electron micrographs and nitrogen adsorption-desorption data showed that these functional monolithic columns have double pores structures with micrometer-size co-continuous through-pores and silica skeletons with open mesopores. The beta-CD monolithic columns have successfully been applied to the separation of several neutral and negatively charged isomers by CEC. The column performance was evaluated by using positional isomers of naphthalenedisulfonic acid as model compounds. A plate height of less than 10 mum for the first eluted isomer of naphthalenedisulfonic acid was obtained at an optimal flow rate (0.47 mm/s) of the mobile phase. Moreover, the columns have been proved to be stable for more than 100 runs during 3 months period and show reasonable column reproducibility.  相似文献   

20.
Immobilized polysaccharide-based chiral stationary phases (CSPs) are gaining importance in the resolution of racemic compounds due to their stable nature on working with normal solvents and those prohibited for use with coated phases (tetrahydrofuran, chloroform, dichloromethane, acetone, 1,4-dioxane, ethyl acetate, and certain other ethers). This review discusses the use of immobilized polysaccharide CSPs in the chiral resolution of various racemates by liquid chromatography. The discussion includes immobilization methodologies, enantioselectivities, efficiencies, and a comparison of chiral recognition capabilities of coated vs. immobilized CSPs. Some applications of immobilized CSPs to the chiral resolution of racemic compounds are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号