首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ab initio crystal orbital calculations on conjugated aromatic six-membered rings polymers,namely,poly(p-phenylene) (PPP),poly(2,5-pyridinediyl) (PPD),poly(2,5-phosphabenzene) (PPB) and ploy(2,5-arsabenzene) (PAB) are reported.The comparison of the important electronic properties of these polymers,such as band gap,bandwidth,ionization potential and electron affinity,indicates that PPP is the best intrinsic semiconductor,and PPD has the best prospects for forming n-doped conducting materials.  相似文献   

2.
Molecular mechanics (MM2) parameters for silanes which have a Si-C-Cl fragment have been developed based on available experimental data and ab initio molecular orbital (MO) calculations. Molecular properties, mainly rotational barriers and geometries, of α-chlorosilanes have been studied using our new MM2 parameter set. Changes in the Si-C bond lengths and several bond angles of α-chlorosilanes due to the additional attachment of polar atom(s) have been investigated utilizing ab initio calculations. An electronegativity correction to both bond lengths and angles helps MM2 to reproduce results from ab initio calculations. The new force field has been applied to the conformational analysis of l-(chloromethyl)-1,2-dimethylsilacyclopentane, a model used in our studies of rearrangements of α-halosilanes.  相似文献   

3.
Cotton FA  Feng X 《Inorganic chemistry》1996,35(17):4921-4925
Electronic structures of the title complexes have been studied using quantum chemical computations by different methods. It is shown that the results of Xalpha calculations agree well with expectations from classical ligand-field theory, but both are far from being in agreement with the results given by ab initio calculations. The HOMO in the ab initio Hartree-Fock molecular orbital diagrams of all these complexes is a chalcogen p(pi) lone pair orbital rather than the metal nonbonding d(xy)() orbital previously proposed. Electronic transition energies were calculated by CASSCF and CI methods. The results suggest that in the cases when Q = S, Se, and Te the lowest energy transitions should be those from the p(pi) lone pair orbitals to the metal-chalcogen pi orbitals. The calculated and observed electronic spectra of the oxo complex are in good agreement and very different from the spectra of the other complexes, and the lowest absorptions were accordingly assigned to transitions of different origins.  相似文献   

4.
Conformational characteristics and configurational properties of poly(1-methylphosphirane) (PMePP) and poly(1-phenylphosphirane) (PPhPP) have been predictively elucidated by the refined rotational isomeric state scheme coupled with ab initio molecular orbital and density functional calculations. The lone pair of the phosphorus atom adopts an sp hybrid orbital. Owing to the high s character (50%), the polyphosphiranes exhibit low proton (hydrogen) affinities, and hence the lone pair does not form any intramolecular attractive interactions with hydrogen. As the meso-diad probability varies from 0 (syndiotactic) to 1 (isotactic), the characteristic ratio of PMePP slightly increases from 6.7 to 7.4, whereas that of PPhPP considerably decreases from 38 to 7.3. The large dimension of syndiotactic PPhPP is chiefly due to π-π attractions formed between adjacent phenyl groups. The trivalent phosphorus atom may be bonded to heavy, noble, and transition metals but readily or gradually oxidized. The usefulness and necessity of the polyphosphiranes have been assessed.  相似文献   

5.
6.
The structure of poly(diethylsiloxane) (PDES) has been characterized using solid-state NMR of (17)O. The sample studied had a weight-average molecular weight of 2.45 x 10(5). The sample was prepared by utilizing the cationic ring-opening polymerization of (17)O-enriched hexacyclotrisiloxane. Solid-state NMR of (17)O-enriched PDES was measured on the low-temperature beta(1) phase, the high-temperature beta(2) phase, the two-phase system consisting of the liquid crystal and isotropic liquid phase and the isotropic phase. From these data, the molecular structure and dynamics of PDES in the various phases were characterized via the chemical shifts of (17)O, and electric field gradient parameters were determined from NMR and ab initio molecular orbital (MO) calculations. In addition to the solid-state NMR of (1)H, (13)C and (29)Si previously reported on these samples, knowledge of the dynamic behavior of PDES as inferred from the NMR of (17)O in the present study was enhanced significantly. Further, the potential of combining the experimental NMR of (17)O with ab initio MO calculations to characterize the dynamics of polymers containing oxygen is demonstrated.  相似文献   

7.
In this work, we present theoretical evidence illustrating that cyano derivatives of conducting polymers such as polythiophene, polycyclopentadiene, and polyfulvene have smaller intrinsic band gaps than those of their parent polymers. The geometric and electronic properties of the parent and the derivative polymers were studied with the use of two methodologies: (1) the pseudo-one-dimensional band-structure calculations performed using the semi-empirical molecular orbital theory (MNDO, AM1) and (2) oligomer calculations performed using the ab initio molecular orbital theory both at the Hartree–Fock and configuration interaction levels. In particular, we found that an organic polymer, poly(dicyanomethylene cyclopentadifulvene) (PCNFv), has a comparable (possibly lower) band gap to the one observed in poly(dicyanomethylene cyclopentadithiophene) (PCNTH) (which has a band gap of 0.8 eV). The precursor of PCNFv is poly(dicyanomethylene cyclopentadicyclopentadiene) (PCNCY) in which two cyclopentadiene rings are connected by a dicyanomethylene group. The additional bond conjugation (in contrast to PCNCY) perpendicular to the chain axis makes PCNFv very rigid and fully planar. Trends in structural properties indicate that the lower band gaps in the cyano-substituted polymers, in comparison to their parent polymers, are accompanied by a decrease in bond alternations in the aromatic or trans–cisoid forms and by an increase in bond alternations in the quinoid or cis–transoid forms. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 66 : 229–240, 1998  相似文献   

8.
The potential energy hypersurface of the conversion of aminophosphaethyne ( 1 ) to 1-aza-3-phosphaallene ( 2 ) has been studied with the MNDO method. The interconversion includes five intermediate species. The structure and energy of 1 and its isomers produced by a hydrogen shift have been calculated also with ab initio molecular orbital theory by a split valence basis set including a polarization function at the P atom. The results reveal that all the isomers are equilibrium structures. The ab initio calculation predicts the carbenaazaphosphirane 3 to be the intermediate lowest in energy. It is suggested that a carbene ( 3 ), phosphinidene ( 4 ) or azaphosphirene ( 5 ) are responsible for the 1-aza-2,4-diphosphole formation.  相似文献   

9.
Adiabatic ionization energies of dimethyl sulfide (DMS) and ethylene sulfide (thiirane) are both accurately and precisely determined to be 8.6903 +/- 0.0009 and 9.0600 +/- 0.0009 eV, respectively, by vacuum-UV mass-analyzed threshold ionization (MATI) spectroscopy. Also reported are vibrational frequencies of DMS and thiirane monocations. Simulations using a Franck-Condon analysis based on ab initio molecular structures reproduce the experimental findings quite well. Detailed vibrational structures are discussed with the aid of ab initio calculations. Ionization-induced structural changes provide the information about the role of the sulfur nonbonding orbital in the geometrical layout of the title compounds.  相似文献   

10.
The relative stabilities of 2- and 3-acetylthiophenes have been evaluated by experimental thermochemistry and the results compared to high-level ab initio calculations. The enthalpies of combustion, vaporization, and sublimation were measured by rotating-bomb combustion calorimetry, Calvet microcalorimetry, correlation gas chromatography, and Knudsen effusion techniques and the gas-phase enthalpies of formation, at T = 298.15 K, were determined. Standard ab initio molecular orbital calculations at the G2 and G3 levels were performed, and a theoretical study on the molecular and electronic structures of the compounds studied has been conducted. Calculated enthalpies of formation using atomization and isodesmic reactions are compared with the experimental data. Experimental and theoretical results show that 2-acetylthiophene is thermodynamically more stable than the 3-isomer. A comparison of the substituent effect of the acetyl group in benzene and thiophene rings has been carried out.  相似文献   

11.
Silyleneisthesimilarityofsilicontocarbene,and,likecarbeneinorganicreactions,itplaysaveryimportantroleinorganosiliconreactions.Inrecentyears,therehavebeenmanyreportsonsilylenesinquantumchemicalresearches[1—3].Investigationonitsorganicreactionshowsthatreali…  相似文献   

12.
The optimized molecular structures, vibrational frequencies, corresponding vibrational assignments, thermodynamic properties, UV–vis spectra and atomic charges of 3-(5-methylthiazol-2-yldiazenyl)-2-phenyl-1H-indole molecule have been investigated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods at 6–31G (d,p) basis set. The obtained bond lengths and bond angles have been seen to be good agreement with the experimental data. After calculated vibrational frequencies have been compared with each other, the correlation coefficient has been determined. Moreover, we have not only simulated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) but also determined the transition state and energy band gap. Infrared intensities and Raman activities have been also reported.  相似文献   

13.

A symmetric bidentate Schiff-base ligand and its complex with Cd(II) is described. The ligand and its complex were characterized by microanalysis, UV-Vis, GC-Mass and FT-IR spectroscopic methods. The present work also studied the structures and electronic properties of the bidentate Schiff-base ligand by using ab initio and AM1 molecular orbital methods. Ab initio and AM1 geometrical predictions have been compared. The analysis of molecular orbitals (MOs) indicates that the N(3) and N(6) atoms could be the coordination sites in this ligand.  相似文献   

14.
Elongation method was applied to determine the electronic structures of B-type poly(dG).poly(dC) DNA at the ab initio molecular orbital level as a first step toward the calculation of aperiodic DNA. The discrepancy in total energy between the elongation method and a conventional calculation was negligibly small in the order of 10(-8) hartreeat. for 14 G-C base pair model. The local density of states for 10 G-C base pair model estimated by the elongation method well reproduced the results by the conventional calculation. It was found that the band gap of the whole system is mainly due to the energy difference between the valence band of guanine and the conduction band of cytosine. Moreover, the electron transfer path through stacking G-C base pairs rather than sugar-phosphate backbones has been confirmed by the authors' calculations.  相似文献   

15.
Summary The conformational preferences of 12 molecular substructures in the crystalline state have been determined and compared with those predicted for relevant model compounds by ab initio molecular orbital calculations. Least-squares regression shows that there is a statistically significant correlation between the crystal-structure conformer distributions and the calculated potential-energy differences, even though the calculations relate to a gas-phase environment. Torsion angles associated with high strain energy (>1 kcal mol-1) appear to be very unusual in crystal structures and, in general, high-energy conformers are underrepresented in crystal structures compared with a gas-phase, room-temperature Boltzmann distribution. It is concluded that crystal packing effects rarely have a strong systematic effect on molecular conformations. Therefore, the conformational distribution of a molecular substructure in a series of related crystal structures is likely to be a good guide to the corresponding gas-phase potential energy surface.  相似文献   

16.
The atmospherically relevant reactions between dimethyl selenide (DMSe) and the molecular halogens (X(2) = Cl(2), Br(2), and I(2)) have been studied with ab initio calculations at the MP2/aug-cc-pVDZ level of theory. Geometry optimization calculations showed that the reactions proceed from the reagents to the products (CH(3)SeCH(2)X + HX) via three minima, a van der Waals adduct (DMSe:X(2)), a covalently bound intermediate (DMSeX(2)), and a product-like complex (CH(3)SeCH(2)X:HX). The computed potential energy surfaces are used to predict what molecular species are likely to be observed in spectroscopic experiments such as gas-phase photoelectron spectroscopy and infrared matrix isolation spectroscopy. It is concluded that, for the reactions of DMSe with Cl(2) and Br(2), the covalent intermediate should be seen in spectroscopic experiments, whereas, in the DMSe + I(2) reaction, the van der Waals adduct DMSe:I(2) should be observed. Comparison is made with previous related calculations and experiments on dimethyl sulfide (DMS) with molecular halogens. The relevance of the results to atmospheric chemistry is discussed. The DMSeX(2) and DMSe:X(2) intermediates are likely to be reservoirs of molecular halogens in the atmosphere which will lead on photolysis to ozone depletion.  相似文献   

17.
The gas-phase reactivities of the well-known (.)CH(2)CH(2)C(+)=O and (.)CH(2)CH(2)CH(2)C(+)=O distonic ions towards neutral pyridine were studied both experimentally (six sector hybrid mass spectrometer) and theoretically (density functional theory and M?ller-Plesset ab initio calculations). Competitively to the charge exchange and protonation processes, both radical cations react with pyridine by an initial bonding between the positive charge site of the ion and the lone electron pair of the neutral molecule. At variance with previously reported studies in which such a nucleophilic interaction was proposed to play only a transient catalytic role, the initial C-N bond is likely to remain in the observed ion-molecule reaction products. The structures of the ion-molecule reactions products were probed by collisional activation at high kinetic energy and the reaction pathways were tentatively proposed on the basis of labeling experiments and ab initio molecular orbital calculations.  相似文献   

18.
The synthesis of Me(6)Te in 1990 stimulated the exploration of hexamethylchalcogen potential energy surfaces. This earlier ab initio work focused only on the D(3) conformers, but it has been noted that the pseudooctahedral X(CH(3))(6) compounds show either D(3) or S(6) symmetry. Here are reported the results of an ab initio molecular orbital study of the hexamethylchalcogens confined to S(6) symmetry. Stationary points were found for each of the three hexamethylchalcogens studied and were shown to be minima for the two larger hexamethylchalcogens. Each of the S(6) stationary points found was energetically higher lying than the earlier reported D(3) counterpart. These energy differences are discussed in terms of nuclear repulsion and molecular orbital bonding considerations.  相似文献   

19.
We combined classical molecular dynamics (MD) simulation with ab initio calculations to study the electronic structure evolution of DNA during its conformation transition process. By using MD simulation, we obtained the conformation transition trajectory of an oligonucleotide poly(dC)-poly(dG), from which we selected a series of representative conformations and then performed ab initio calculations for these conformations to reveal their electronic structures. Counterintuitively, the results indicate that during the conformation transition process of DNA, thermal fluctuation plays a more important role than global conformation parameters in affecting the electronic structure of DNA.  相似文献   

20.
Anisotropic interactions between a metastable He(2(3)S) atom and aromatic heterocyclic compounds (thiazole and benzothiazole) as well as their electronic structures were studied by means of collision-energy/electron-energy resolved two-dimensional Penning ionization electron spectroscopy combined with ab initio molecular orbital calculations. Different collision-energy dependence of partial ionization cross sections (CEDPICS) were clearly observed for different ionic states depending on anisotropic extents of molecular orbitals from which an electron is removed. It was found that thiazole and benzothiazole most strongly attract a He(2(3)S) atom around the region where the nitrogen lone pair orbital extends. For another heteroatom, sulfur, it is relatively weak, but a certain attractive interaction was found for the directions perpendicular to the molecular plane. Benzothiazole was shown to widely attract a He(2(3)S) atom in the out-of-plane directions, since the benzene moiety showed a deeper potential well than the five-membered ring. Assignments of the ionic states including shake-up states were also discussed from observed CEDPICS and ab initio molecular orbital calculations. In particular, for the satellite bands, a negative collision energy dependence of the band intensity was well supported by a configuration-interaction calculation that assigns the satellite bands to be the ionization from pi orbitals accompanying pi-pi or n-pi excitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号