首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
We investigate theoretically the control of the ultrafast excited state dynamics of adenine in water by laser pulse trains, with the aim to extend the excited state lifetime and to suppress nonradiative relaxation processes. For this purpose, we introduce the combination of our field-induced surface hopping method (FISH) with the quantum mechanical-molecular mechanical (QM/MM) technique for simulating the laser-driven dynamics in the condensed phase under explicit inclusion of the solvent environment. Moreover, we employ parametric pulse shaping in the frequency domain in order to design simplified laser pulse trains allowing to establish a direct link between the pulse parameters and the controlled dynamics. We construct pulse trains which achieve a high excitation efficiency and at the same time keep a high excited state population for a significantly extended time period compared to the uncontrolled dynamics. The control mechanism involves a sequential cycling of the population between the lowest and higher excited states, thereby utilizing the properties of the corresponding potential energy surfaces to avoid conical intersections and thus to suppress the nonradiative decay to the ground state. Our findings provide a means to increase the fluorescence yield of molecules with an intrinsically very short excited state lifetime, which can lead to novel applications of shaped laser fields in the context of biosensing.  相似文献   

2.
We consider the problem of stochastic averaging of a quantum two-state dynamics driven by non-Markovian, discrete noises of the continuous time random walk type (multistate renewal processes). The emphasis is put on the proper averaging over the stationary noise realizations corresponding, e.g., to a stationary environment. A two-state non-Markovian process with an arbitrary non-exponential distribution of residence times (RTDs) in its states with a finite mean residence time provides a paradigm. For the case of a two-state quantum relaxation caused by such a classical stochastic field we obtain the explicit exact, analytical expression for the averaged Laplace-transformed relaxation dynamics. In the limit of Markovian noise (implying an exponential RTD), all previously known results are recovered. We exemplify new more general results for the case of non-Markovian noise with a biexponential RTD. The averaged, real-time relaxation dynamics is obtained in this case by numerically exact solving of a resulting algebraic polynomial problem. Moreover, the case of manifest non-Markovian noise with an infinite range of temporal autocorrelation (which in principle is not accessible to any kind of perturbative treatment) is studied, both analytically (asymptotic long-time dynamics) and numerically (by a precise numerical inversion of the Laplace-transformed averaged quantum relaxation).  相似文献   

3.
The implementations of quantum logic gates realized by the rovibrational states of a C(12)O(16) molecule in the X((1)Σ(+)) electronic ground state are investigated. Optimal laser fields are obtained by using the modified multitarget optimal theory (MTOCT) which combines the maxima of the cost functional and the fidelity for state and quantum process. The projection operator technique together with modified MTOCT is used to get optimal laser fields. If initial states of the quantum gate are pure states, states at target time approach well to ideal target states. However, if the initial states are mixed states, the target states do not approach well to ideal ones. The process fidelity is introduced to investigate the reliability of the quantum gate operation driven by the optimal laser field. We found that the quantum gates operate reliably whether the initial states are pure or mixed.  相似文献   

4.
We investigate quantum evolution speed in the driven double-well system using the entangled trajectory molecular dynamics method. We emphasize not only the evolution speed of the quantum state but also its limit according to different definitions. The Wasserstein 1-distance is used to quantify the distance between distinguishable quantum states in the phase space, the quantum speed limit based on the geometry has been shown to be the strictest one. The single trajectory's contribution to the quantum speed limit is discussed, which is related to both the time evolution of the trajectory and its position in the total Wigner function. The resonance and chaos strongly enhance the evolution speed and its limit in the driven double-well system. The resonance effect makes a large proportion of representative points pass through the well as a whole, nevertheless, the chaos makes the Wigner function disperse in the phase space.  相似文献   

5.
This paper explores the utility of instantaneous and continuous observations in the optimal control of quantum dynamics. Simulations of the processes are performed on several multilevel quantum systems with the goal of population transfer. Optimal control fields are shown to be capable of cooperating or fighting with observations to achieve a good yield, and the nature of the observations may be optimized to more effectively control the quantum dynamics. Quantum observations also can break dynamical symmetries to increase the controllability of a quantum system. The quantum Zeno and anti-Zeno effects induced by observations are the key operating principles in these processes. The results indicate that quantum observations can be effective tools in the control of quantum dynamics.  相似文献   

6.
Results of a theoretical study of ultrafast coherent dynamics of nonadiabatically coupled quasi-degenerate π-electronic excited states of molecules were presented. Analytical expressions for temporal behaviors of population and vibrational coherence were derived using a simplified model to clarify the quantum mechanical interferences between the two coherently excited electronic states, which appeared in the nuclear wavepacket simulations [M. Kanno, H. Kono, Y. Fujimura, S.H. Lin, Phys. Rev. Lett 104 (2010) 108302]. The photon-polarization direction of the linearly polarized laser, which controls the populations of the two quasi-degenerate electronic states, determines constructive or destructive interference. Features of the vibrational coherence transfer between the two coupled quasi-electronic states through nonadiabatic couplings are also presented. Information on both the transition frequency and nonadiabatic coupling matrix element between the two states can be obtained by analyzing signals of two kinds of quantum beats before and after transfer through nonadiabatic coupling.  相似文献   

7.
8.
New features of molecular wires can be observed when they are irradiated by laser fields. These effects can be achieved by periodically oscillating fields but also by short laser pulses. The theoretical foundation used for these investigations is a density-matrix formalism where the full system is partitioned into a relevant part and a thermal fermionic bath. The derivation of a quantum master equation, either based on a time-convolutionless or time-convolution projection-operator approach, incorporates the interaction with time-dependent laser fields nonperturbatively and is valid at low temperatures for weak system-bath coupling. From the population dynamics the electrical current through the molecular wire is determined. This theory including further extensions is used for the determination of electron transport through molecular wires. As examples, we show computations of coherent destruction of tunneling in asymmetric periodically driven quantum systems, alternating currents and the suppression of the directed current by using a short laser pulse.  相似文献   

9.
This paper explores the optimal control of quantum state transformations in finite-dimensional quantum systems by a sequence of non-selective projective measurements. In our schemes, the projectors of each measurement are represented by a unitary matrix. Through variational analysis of the objective function over the unitary group, the necessary condition for a measurement sequence to be a critical point of the underlying state transformation objective is found to be a highly symmetric form as a chain of equalities. Since these equality relations are generally difficult to solve analytically, we focus on the fundamental case employing a single measurement, in which analytical solutions for maximizing the state transformation probability are found between pure states, or between mixed and pure states, or between orthogonal mixed states under two typical type of measurements. These results suggest a new way of designing optimal quantum dynamics control strategies by quantum measurements.  相似文献   

10.
We report time-dependent configuration interaction singles calculations for the ultrafast laser driven many-electron dynamics in a polyatomic molecule, N-methyl-6-quinolone. We employ optimal control theory to achieve a nearly state-selective excitation from the S(0) to the S(1) state, on a time scale of a few ( approximately 6) femtoseconds. The optimal control scheme is shown to correct for effects opposing a state-selective transition, such as multiphoton transitions and other, nonlinear phenomena, which are induced by the ultrashort and intense laser fields. In contrast, simple two-level pi pulses are not effective in state-selective excitations when very short pulses are used. Also, the dependence of multiphoton and nonlinear effects on the number of states included in the dynamical simulations is investigated.  相似文献   

11.
In open quantum systems, decoherence occurs through interaction of a quantum subsystem with its environment. The computation of expectation values requires a knowledge of the quantum dynamics of operators and sampling from initial states of the density matrix describing the subsystem and bath. We consider situations where the quantum evolution can be approximated by quantum-classical Liouville dynamics and examine the circumstances under which the evolution can be reduced to surface-hopping dynamics, where the evolution consists of trajectory segments exclusively evolving on single adiabatic surfaces, with probabilistic hops between these surfaces. The justification for the reduction depends on the validity of a Markovian approximation on a bath averaged memory kernel that accounts for quantum coherence in the system. We show that such a reduction is often possible when initial sampling is from either the quantum or classical bath initial distributions. If the average is taken only over the quantum dispersion that broadens the classical distribution, then such a reduction is not always possible.  相似文献   

12.
We study wave packet interferometry (WPI) considering the laser pulse fields both classical and quantum mechanically. WPI occurs in a molecule after subjecting it to the interaction with a sequence of phase-locked ultrashort laser pulses. Typically, the measured quantity is the fluorescence of the molecule from an excited electronic state. This signal has imprinted the interference of the vibrational wave packets prepared by the different laser pulses of the sequence. The consideration of the pulses as quantum entities in the analysis allows us to study the entanglement of the laser pulse states with the molecular states. With a simple model for the molecular system, plus several justified approximations, we solve for the fully quantum mechanical molecule-electromagnetic field state. We then study the reduced density matrices of the molecule and the laser pulses separately. We calculate measurable corrections to the case where the fields are treated classically.  相似文献   

13.
We study a wavepacket tunneling in one‐dimensional periodically driven double‐well system using entangled trajectory molecular dynamics method. The tunneling dynamics dependents on the amplitude and frequency of the driven force are present. Both resonant and nonresonant tunneling process are enhanced by the driven force when the system is chaotic under classical dynamics. We give entangled trajectory in phase space compared to corresponding classical trajectory with same initial state to visually show quantum tunneling process. The average values of quantum tunneling probability after long time evolution have been shown in the parameter spaces, the effect of resonance and chaos on the tunneling dynamics are present. The relation between chaos and the uncertainly product is discussed in the end. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
Femtosecond laser pulse control of exciton dynamics in a biological chromophore complex is studied theoretically. The computations use the optimal control theory specified to open quantum systems and formulated in the framework of the rotating wave approximation. Based on the laser pulse induced formation of an excitonic wave packet the possibility to localize excitation energy at a certain chromophore within a photosynthetic antenna system (FMO complex of green bacteria) is investigated. Details of exciton dynamics driven by a polarization shaped pulse are discussed.  相似文献   

15.
An approach to the quantum-classical mechanics of phase space dependent operators, which has been proposed recently, is remodeled as a formalism for wave fields. Such wave fields obey a system of coupled nonlinear equations that can be written by means of a suitable non-Hamiltonian bracket. As an example, the theory is applied to the relaxation dynamics of the spin-boson model. In the adiabatic limit, a good agreement with calculations performed by the operator approach is obtained. Moreover, the theory proposed in this paper can take nonadiabatic effects into account without resorting to surface-hopping approximations. Hence, the results obtained follow qualitatively those of previous surface-hopping calculations and increase by a factor of (at least) 2, the time length over which nonadiabatic dynamics can be propagated with small statistical errors. Moreover, it is worth to note that the dynamics of quantum-classical wave fields proposed here is a straightforward non-Hamiltonian generalization of the formalism for nonlinear quantum mechanics that Weinberg introduced recently.  相似文献   

16.
It is shown that the single-mode Floquet formalism of Shirley can be extended to a generalized many-mode Floquet theory, yielding a practical non-perturbative technique for the semiclassical treatment of the interaction of a quantum system several monochromatic oscillating fields. The theory is illustrated by a detailed study of the population dynamics of a three-level system driven by two monochromatic radiation fields.  相似文献   

17.
Dynamics of passage over a saddle is investigated for a quantum system under the effect of time-dependent external field (laser pulse). We utilize the recently developed theories of nonlinear dynamics in the saddle region, and extend them to incorporate both time-dependence of the external field and quantum mechanical effects of the system. Anharmonic couplings and laser fields with any functional form of time dependence are explicitly taken into account. As the theory is based on the Weyl expression of quantum mechanics, interpretation is facilitated by the classical phase space picture, while no "classical approximation" is involved. We introduce a quantum reactivity operator to extract the reactive part of the system. In a model system with an optimally controlled laser field for the reaction, it is found that the boundary of the reaction in the phase space, extracted by the reactivity operator, is modulated with time by the effect of the laser field, to "catch" the system excited in the reactant region, and then to "release" it into the product region. This method provides new insights in understanding the origin of optimal control of chemical reactions by laser fields.  相似文献   

18.
A continuous wave quantum cascade laser (cw-QCL) operating at 10 μm has been used to record absorption spectra of low pressure samples of OCS in an astigmatic Herriott cell. As a result of the frequency chirp of the laser, the spectra show clearly the effects of rapid passage on the absorption line shape. At the low chirp rates that can be obtained with the cw-QCL, population transfer between rovibrational quantum states is predicted to be much more efficient than in typical pulsed QCL experiments. This optical pumping is investigated by solving the Maxwell Bloch equations to simulate the propagation of the laser radiation through an inhomogeneously broadened two-level system. The calculated absorption profiles show good quantitative agreement with those measured experimentally over a range of chirp rates and optical thicknesses. It is predicted that at a low chirp rate of 0.13 MHz ns(-1), the population transfer between rovibrational quantum states is 12%, considerably more than that obtained at the higher chirp rates utilised in pulsed QCL experiments.  相似文献   

19.
We calculate quantum tunneling time in the double-well system without perturbation and with symmetry-breaking driven force using the entangled trajectory molecular dynamics method in the present article. Without perturbation, quantum tunneling time decreased with the increase of the energy, and the different contributions of the barrier traversal time and the intrinsic decay time have been shown. The tunneling time dependence on the amplitude and frequency of the symmetry-breaking driven force are present. In the case of weak driven force, tunneling time has a minimum value in the resonant frequency. For strong driven force, chaos brings a huge change to quantum dynamics, tunneling time significantly becomes short. Finally, we directly show the enhancement of quantum tunneling process by chaotic behavior of entangled trajectories and indicate that it was caused by quantum effect.  相似文献   

20.
Biomolecule conformational change has been widely investigated in solution using several methods; however, much less experimental data about structural changes are available for completely isolated, gas-phase biomolecules. Studies of conformational change in unsolvated biomolecules are required to complement the interpretation of mass spectrometry measurements and in addition, can provide a means to directly test theoretical simulations of biomolecule structure and dynamics independent of a simulated solvent. In this Feature Article, we review our recent introduction of a fluorescence-based method for probing local conformational dynamics in unsolvated biomolecules through interactions of an attached dye with tryptophan (Trp) residues and fields originating on charge sites. Dye-derivatized biomolecule ions are formed by electrospray ionization and are trapped in a variable-temperature quadrupole ion trap in which they are irradiated with either continuous or short pulse lasers to excite fluorescence. Fluorescence is measured as a function of temperature for different charge states. Optical measurements of the dye fluorescence include average intensity changes, changes in the emission spectrum, and time-resolved measurements of the fluorescence decay. These measurements have been applied to the miniprotein, Trp-cage, polyproline peptides and to a beta-hairpin-forming peptide, and the results are presented as examples of the broad applicability and utility of these methods. Model fits to Trp-cage fluorescence data measured as a function of temperature provide quantitative information on the thermodynamics of conformational changes, which are reproduced well by molecular dynamics. Time-resolved measurements of the fluorescence decays of Trp-cage and small polyproline peptides definitively demonstrate the occurrence of fluorescence quenching by the amino acid Trp in unsolvated biomolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号