首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Molecular dynamics simulations were carried out in order to study the hydration of C60 fullerenes, carbon nanotubes, and graphene sheets in aqueous solution and the nature of water-induced interactions between these carbon nanoparticles. The hydration of these nonpolar carbon nanoparticles does not exhibit classical hydrophobic character due to the high density of surface atoms (carbon) resulting in strong water-surface dispersion interactions. Water was found to wet the nanoparticle surfaces independent of nanoparticle surface curvature, with the decrease in the extent of water-water hydrogen bonding with decreasing surface curvature being offset by stronger water-surface interactions. While all carbon nanoparticles investigated are anticipated to aggregate in water due to strong direct nanoparticle-nanoparticle interactions, the water-induced interactions between nanoparticles were found to be repulsive and, in contrast to the wetting behavior, were observed to exhibit strong dependence on surface curvature. The strength of the water-induced interaction between carbon nanoparticles was found to correlate well with the number of hydration water molecules displaced upon particle aggregation, which, relative to the amount of direct nanoparticle-nanoparticle contact engendered upon aggregation, decreases with decreasing surface curvature.  相似文献   

2.
Utilizing a first-principles-based coarse-grained implicit solvent model, we have investigated the self-association of C(60) fullerenes that have been symmetrically modified with six grafted poly(ethylene oxide) (PEO) chains in aqueous solution. Despite the highly symmetric nature of the pair interactions between PEO-grafted fullerenes, their supramolecular assemblies are highly anisotropic and resemble the linear clusters formed in Stockmayer fluids. The dipole-like interaction between these symmetrically modified fullerenes results from the shielding of the C(60) fullerenes by PEO, favoring the addition of more PEO-grafted fullerenes to the linear clusters at the relatively unprotected ends. At low nanoparticle concentrations, self-association is dominated by the formation of stable dimers and trimers resulting from fullerene-fullerene contact and favorable PEO-fullerene interactions. With increasing nanoparticle concentration, larger clusters become increasingly probable. The molecular weight of the PEO tethers can be treated as a temperature-like analogue, with a reduction in average cluster size with increasing chain length due to increased steric repulsion, which is qualitatively similar to effects observed in Stockmayer fluids with increasing temperature. The role of PEO in supramolecular self-organization in PEO-modified C(60) fullerene/water solutions is complex, contributing not only to steric stabilization but also to favorable energetic interactions, nanoparticle shielding, and depletion-driven aggregation.  相似文献   

3.
The aggregation behavior of C60 fullerenes and C60 fullerenes with six symmetrically tethered poly(ethylene oxide) oligomers [(PEO)-6-C60] in aqueous solutions has been studied using implicit solvent molecular dynamics simulations. Our simulations reveal that while the attraction between two (PEO)-6-C60 fullerenes in aqueous solution is stronger and longer range than that between two bare C60 fullerenes, the (PEO)-6-C60 fullerenes do not phase-separate in water but rather aggregate in chain-like clusters at concentrations where unmodified fullerenes completely phase-separate.  相似文献   

4.
To investigate the implications of the unique properties of fullerenes on their interaction with and passive transport into lipid membranes, atomistic molecular dynamics simulations of a C60 fullerene in a fully hydrated di-myristoyl-phoshatidylcholine lipid membrane have been carried out. In these simulations the free energy and the diffusivity of the fullerene were obtained as a function of its position within the membrane. These properties were utilized to calculate the permeability of fullerenes through the lipid membrane. Simulations reveal that the free energy decreases as the fullerene passes from the aqueous phase, through the head group layer and into the hydrophobic core of the membrane. This decrease in free energy is not due to hydrophobic interactions but rather to stronger van der Waals (dispersion) interactions between the fullerene and the membrane compared to those between the fullerene and (bulk) water. It was found that there is no free energy barrier for transport of a fullerene from the aqueous phase into the lipid core of the membrane. In combination with strong partitioning of the fullerenes into the lipidic core of the membrane, this "barrierless" penetration results in an astonishingly large permeability of fullerenes through the lipid membrane, greater than observed for any other known penetrant. When the strength of the dispersion interactions between the fullerene and its surroundings is reduced in the simulations, thereby emulating a nanometer sized hydrophobic particle, a large free energy barrier for penetration of the head group layer emerges, indicating that the large permeability of fullerenes through lipid membranes is a result of their unique interaction with their surrounding medium.  相似文献   

5.
The structuring of water molecules in the vicinity of nonpolar solutes is responsible for hydrophobic hydration and association thermodynamics in aqueous solutions. Here, we studied the potential of mean force (PMF) for the formation of a dimer and trimers of methane molecules in three specific configurations in explicit water to explain multibody effects in hydrophobic association on a molecular level. We analyzed the packing and orientation of water molecules in the vicinity of the solute to explain the effect of ordering of the water around nonpolar solutes on many-body interactions. Consistent with previous theoretical studies, we observed cooperativity, manifested as a reduction of the height of the desolvation barrier for the trimer in an isosceles triangle geometry, but for linear trimers, we observed only anticooperativity. A simple mechanistic picture of hydrophobic association is drawn. The free energy of hydrophobic association depends primarily on the difference in the number of water molecules in the first solvation shell of a cluster and that in the monomers of a cluster; this can be approximated by the molecular surface area. However, there are unfavorable electrostatic interactions between the water molecules from different parts of the solvation shell of a trimer because of their increased orientation induced by the nonpolar solute. These electrostatic interactions make an anticooperative contribution to the PMF, which is clearly manifested for the linear trimer where the multibody contribution due to changes in the molecular surface area is equal to zero. The information theory model of hydrophobic interactions of Hummer et al. also explains the anticooperativity of hydrophobic association of the linear trimers; however, it predicts anticooperativity with a qualitatively identical distance dependence for nonlinear trimers, which disagrees with the results of simulations.  相似文献   

6.
The conventional concept of hydrophobic interaction is generalized to include any kind of solvent-induced effects on the binding of two or more solutes in aqueous solutions. Specifically, we focus on the role of hydrogen-bonding between the solutes and solvent molecules. A qualitative examination of the solute-solvent hydrogen-bonding effect on molecular recognition, self-assembly, and stabilization of biopolymers shows that these effects might be quite large and possible more important than direct interactions between solute particles.  相似文献   

7.
Although the potency of conventional anesthetics correlates with lipophilicity, an affinity to water also is essential. It was recently found that compounds with very low affinities to water do not produce anesthesia regardless of their lipophilicity. This finding implies that clinical anesthesia might arise because of interactions at molecular sites near the interface of neuronal membranes with the aqueous environment and, therefore, might require increased concentrations of anesthetic molecules at membrane interfaces. As an initial test of this hypothesis, we calculated in molecular dynamics simulations the free energy profiles for the transfer of anesthetic 1,1,2-trifluoroethane and nonanesthetic perfluoroethane across water-membrane and water-hexane interfaces. Consistent with the hypothesis, it was found that trifluoroethane, but not perfluoroethane, exhibits a free energy minimum and, therefore, increased concentrations at both interfaces. The transfer of trifluoroethane from water to the nonpolar hexane or interior of the membrane is accompanied by a considerable, solvent-induced shift in the conformational equilibrium around the C-C bond.  相似文献   

8.
The interaction between certain nonionic cellulose ethers (ethyl hydroxyethyl cellulose and hydroxypropyl methyl cellulose) and sodium dodecyl sulphate (SDS) has been investigated using isothermal titration microcalorimetry at temperatures between 25-50 degrees C. The observed heat flow curves have been interpreted in terms of a plausible mechanism of the interaction of the substituent groups with SDS monomers and clusters. The data have been related to changes occuring in the system at the macro- and microscopic levels with the addition of surfactants and with temperature. The process consists predominantly of polymer-surfactant interactions initially and surfactant-surfactant interactions at the later stages. A phenomenological model of the cooperative interaction (adsorption) process has been derived, and earlier published equilibrium binding data have been used to recover binding constants and Gibbs energy changes for this process. The adsorption enthalpies and entropies have been recovered along with the heat capacity change. The enthalpic cost of confining the nonpolar regions of the polymers in surfactant clusters is high, but the entropy gain from release of hydration shell water molecules as well as increased freedom of movement of these nonpolar regions in the clusters gives the process a strong entropic driving force. The process is entropy-driven initially and converts to being both enthalpy and entropy-driven at high SDS concentrations. An enthalpy-entropy compensation behavior is seen. Strongly negative heat capacity changes have been obtained resulting from the transfer of nonpolar groups from aqueous into nonpolar environments, as well as a reduction of conformational domains that the chains can populate. Changes in these two components cause the heat capacity change to become less negative at the higher binding levels. The system can be classified as exhibiting nonclassical hydrophobic binding at the later stages of binding. Copyright 1999 Academic Press.  相似文献   

9.
We report small angle x-ray scattering data demonstrating the direct experimental microscopic observation of the small-to-large crossover behavior of hydrophobic effects in hydrophobic solvation. By increasing the side chain length of amphiphilic tetraalkyl-ammonium (C(n)H(2n+1))(4)N(+) (R(4)N(+)) cations in aqueous solution we observe diffraction peaks indicating association between cations at a solute size between 4.4 and 5 A?, which show temperature dependence dominated by hydrophobic attraction. Using O K-edge x-ray absorption we show that small solutes affect hydrogen bonding in water similar to a temperature decrease, while large solutes affect water similar to a temperature increase. Molecular dynamics simulations support, and provide further insight into, the origin of the experimental observations.  相似文献   

10.
Noncovalent binding of fullerenes to bisporphyrins was studied in the gas phase by energy-dependent collision-induced dissociation (CID) with Xe under single-collision conditions. The electrospray ionization mass spectra of calix[4]arene-linked bisporphyrins show that bisporphyrins take up to 3-4 protons, depending on the type of meso-substituents. Of the protonated bisporphyrins, the diprotonated species form stable 1:1 complexes with fullerenes (C(60) and C(70)). CID cracking patterns of the diprotonated bisporphyrins indicate that each monomeric porphyrin moiety is singly protonated. CID yield-energy curves obtained from the 1:1 diprotonated bisporphyrin-fullerene complexes suggest that a fullerene occupies the endo-binding site intercalated between the two singly protonated porphyrin moieties. In the cases of 1:2 diprotonated bisporphyrin-fullerene complexes, CID results show that one fullerene binds inside (endo-binding) and the other outside (exo-binding). The exo-binding mode is energetically almost identical to the binding of fullerenes to singly protonated porphyrin monomers. The endo-binding energy is at least twice the exo-binding energy. To gain insights into the binding mode, we optimized structures of diprotonated bisporphyrins and their 1:1 endo-complexes with fullerenes, and calculated the endo-binding energy for C(60), C(70) (end-on), and C(70) (side-on). The endo-binding of fullerenes to diprotonated bisporphyrins nearly doubles the π-π interactions while reducing the electrostatic repulsion between the two singly protonated porphyrin moieties. The side-on binding of C(70) is favored over the end-on binding because the former exerts less steric strain to the lower rim of calixarene.  相似文献   

11.
The energy spectrum of C60 nonclassic fullerenes with single heptagon defects calculated by Brenner empirical potential is found to submerge into the spectrum of classic fullerenes. Geometry analysis indicates that these nonclassic fullerene isomers can be more attainable than classic fullerenes at higher Stone-Wales (SW) stacks. Molecular dynamic simulations of the C60 isomer evolution in He buffer gas at 2500 K demonstrate that nonclassic fullerenes, especially those with heptagon defects, play an important role in the dynamics of C60 annealing, and that the Stone-Wales stack-by-stack transition mainly occurs at lower SW stacks. A non-SW multistep rearrangement is first observed in the simulation with its transition sequence and intermediate state presented in detail.  相似文献   

12.
We studied by molecular dynamics simulations the temperature dependence of hydrophobic association and drying transition of large-scale solutes. Similar to the behavior of small solutes, we found the association process to be characterized by a large negative heat capacity change. The origin of this large change in heat capacity is the high fragility of hydrogen bonds between water molecules at the interface with hydrophobic solutes; an increase in temperature breaks more hydrogen bonds at the interface than in the bulk. With increasing temperature, both entropy and enthalpy changes for association strongly decrease, while the change in free energy weakly varies, exhibiting a small minimum at high temperatures. At around T=Ts=360 K, the change in entropy is zero, a behavior similar to the solvation of small nonpolar solutes. Unexpectedly, we find that at Ts, there is still a substantial orientational ordering of the interfacial water molecules relative to the bulk. Nevertheless, at this point, the change in entropy vanishes due to a compensating contribution of translational entropy. Thus, at Ts, there is rotational order and translational disorder of the interfacial water relative to bulk water. In addition, we studied the temperature dependence of the drying-wetting transition. By calculating the contact angle of water on the hydrophobic surface at different temperatures, we compared the critical distance observed in the simulations with the critical distance predicted by macroscopic theory. Although the deviations of the predicted from the observed values are very small (8-23%), there seems to be an increase in the deviations with an increase in temperature. We suggest that these deviations emerge due to increased fluctuations, characterizing finite systems, as the temperature increases.  相似文献   

13.
The time scale and mechanism of vibrational energy relaxation of the heme moiety in myoglobin was studied using molecular dynamics simulation. Five different solvent models, including normal water, heavy water, normal glycerol, deuterated glycerol and a nonpolar solvent, and two forms of the heme, one native and one lacking acidic side chains, were studied. Structural alteration of the protein was observed in native myoglobin glycerol solution and native myoglobin water solution. The single-exponential decay of the excess kinetic energy of the heme following ligand photolysis was observed in all systems studied. The relaxation rate depends on the solvent used. However, this dependence cannot be explained using bulk transport properties of the solvent including macroscopic thermal diffusion. The rate and mechanism of heme cooling depends upon the detailed microscopic interaction between the heme and solvent. Three intermolecular energy transfer mechanisms were considered: (i) energy transfer mediated by hydrogen bonds, (ii) direct vibration-vibration energy transfer via resonant interaction, and (iii) energy transfer via vibration-translation or vibration-rotation interaction, or in other words, thermal collision. The hydrogen bond interaction and vibration-vibration interaction between the heme and solvent molecules dominates the energy transfer in native myoglobin aqueous solution and native myoglobin glycerol solutions. For modified myoglobin, the vibration-vibration interaction is also effective in glycerol solution, different from aqueous solution. Thermal collisions form the dominant energy transfer pathway for modified myoglobin in water solution, and for both native myoglobin and modified myoglobin in a nonpolar environment. For native myoglobin in a nonpolar solvent solution, hydrogen bonds between heme isopropionate side chains and nearby protein residues, absent in the modified myoglobin nonpolar solvent solution, are key interactions influencing the relaxation pathways.  相似文献   

14.
We report a combined theoretical and experimental study on the single-molecule interaction of fullerenes with phospholipid membranes. We studied pristine C(60) (1) and two N-substituted fulleropyrrolidines (2 and 3), one of which (3) bore a paramagnetic nitroxide group. Theoretical predictions of fullerene distribution and permeability across lipid bilayers were combined with electron paramagnetic resonance (EPR) experiments in aligned DMPC/DHPC bicelles containing the paramagnetic fulleropyrrolidine 3 or either one of the diamagnetic fullerenes together with spin-labeled lipids. We found that, at low concentrations, fullerenes are present in the bilayer as single molecules. Their preferred location in the membrane is only slightly influenced by the derivatization: all derivatives were confined just below the hydrophilic/hydrophobic interface, because of the key role played by dispersion interactions between the highly polarizable fullerene cage and the hydrocarbon chains, which are especially tight within this region. However, the deviation from spherical shape is sufficient to induce a preferential orientation of 2 and 3 in the membrane. We predict that monomeric fullerenes spontaneously penetrate the bilayer, in agreement with the results of molecular dynamics simulations, but we point out the limits of the currently used permeability model when applied to hydrophobic solutes.  相似文献   

15.
The hydrophobic hydration of fullerenes in water is of significant interest as the most common Buckminsterfullerene (C60) is a mesoscale sphere; C60 also has potential in pharmaceutical and nanomaterial applications. We use an all-atom molecular dynamics simulation lasting hundreds of nanoseconds to determine the behavior of a single molecule of C60 in a periodic box of water, and compare this to methane. A C60 molecule does not induce drying at the surface; however, unlike a hard sphere methane, a hard sphere C60 solute does. This is due to a larger number of attractive Lennard-Jones interactions between the carbon atom centers in C60 and the surrounding waters. In these simulations, water is not uniformly arranged but rather adopts a range of orientations in the first hydration shell despite the spherical symmetry of both solutes. There is a clear effect of solute size on the orientation of the first hydration shell waters. There is a large increase in hydrogen-bonding contacts between waters in the C60 first hydration shell. There is also a disruption of hydrogen bonds between waters in the first and second hydration shells. Water molecules in the first hydration shell preferentially create triangular structures that minimize the net water dipole near the surface near both the methane and C60 surface, reducing the total energy of the system. Additionally, in the first and second hydration shells, the water dipoles are ordered to a distance of 8 A from the solute surface. We conclude that, with a diameter of approximately 1 nm, C60 behaves as a large hydrophobic solute.  相似文献   

16.
Using molecular-dynamics simulations we investigate thermal relaxation of C60 and C84 molecules suspended in octane liquid. Pristine fullerenes exhibit relatively slow relaxation due to weak thermal coupling with the liquid. A comparison of the interfacial transport characteristics obtained from relaxation simulations with those obtained from equilibrium simulations and fluctuation-dissipation theorem analysis demonstrates that the relaxation process involves two main steps: (i) energy flow from high- to low-frequency modes within the fullerene, and (ii) energy flow from low-frequency fullerene modes to the liquid. Functionalization of fullerenes with alkene chains leads to significant reduction of the thermal relaxation time. The relaxation time of functionalized fullerenes becomes independent from the functionalizing chain length beyond approximately 10 carbon segments; this can be understood in terms of thermal conductivity along the chain and heat transfer between the chain and the solvent.  相似文献   

17.
Solvation enthalpies of simple solutes contain contributions from (1) solute-solvent interactions and (2) solute-induced modifications of solvent-solvent interactions (solvent reorganization). It has recently been suggested in the literature that these contributions can, under certain conditions, be estimated with additional experimental data on thermodynamic response functions of the pure solvent (coefficient of thermal expansion, isothermal compressibility) and the solute solvation volume. We analyze and discuss these conditions based on computer simulations of a series of polar and nonpolar solutes in a polar and nonpolar liquid solvent.  相似文献   

18.
The effects of salt on the intermolecular interactions between polar/charged amino acids are investigated through molecular dynamics simulations. The mean forces and associated potentials are calculated for NaCl salt in the 0-2 M concentration range at 298 K. It is found that the addition of salt may stabilize or destabilize the interactions, depending on the nature of the interacting molecules. The degree of (de)stabilization is quantified, and the origin of the salt-dependent modulation is discussed based upon an analysis of solvent density profiles. To gain insight into the molecular origin of the salt modulation, spatial distribution functions (sdf's) are calculated, revealing a high degree of solvent structuredness in all cases. The peaks in the sdf's are consistent with long-range hydrogen-bonding networks connecting the solute hydrophilic groups, and that contribute to their intermolecular solvent-induced forces. The restructuring of water around the solutes as they dissociate from close contact is analyzed. This analysis offers clues on how the solvent structure modulates the effective intermolecular interactions in complex solutes. This modulation results from a critical balance between bulk electrostatic forces and those exerted by (i) the water molecules in the structured region between the monomers, which is disrupted by ions that transiently enter the hydration shells, and (ii) the ions in the hydration shells in direct interactions with the solutes. The implications of these findings in protein/ligand (noncovalent) association/dissociation mechanisms are briefly discussed.  相似文献   

19.
We have carried out atomistic molecular dynamics simulations of C60 fullerenes inside a dimyristoylphosphatidylcholine lipid bilayer and an alkane melt. Simulations reveal that the preferred position of a single C60 fullerene is about 6-7 A off of the center plane, allowing the fullerene to take advantage of strong dispersion interactions with denser regions of the bilayer. Further displacement (>8 A) of the fullerene away from the center plane results in a rapid increase in free energy likely due to distortion of the lipid head group layer. The effective interaction between fullerenes (direct interaction plus environment (bilayer)-induced interaction), measured as the potential of mean force (POMF) between two fullerenes as a function of their separation, was found to be significantly less attractive in the lipid bilayer than in an alkane melt of the same molecular weight as the lipid tails. Only part of this difference can be accounted for by the more favorable interaction of the fullerene with the relatively denser bilayer. Additionally, our POMF studies indicate that the bilayer is less able to accommodate the larger aggregated fullerene pair than isolated single fullerenes, again likely due to distortion of the bilayer structure. The implications of these effects on aggregation of fullerenes within lipid bilayer are considered.  相似文献   

20.
The aqueous solvation free energies of ionized molecules were computed using a coupled quantum mechanical and molecular mechanical (QM/MM) model based on the AM1, MNDO, and PM3 semiempirical molecular orbital methods for the solute molecule and the TIP3P molecular mechanics model for liquid water. The present work is an extension of our model for neutral solutes where we assumed that the total free energy is the sum of components derived from the electrostatic/polarization terms in the Hamiltonian plus an empirical “nonpolar” term. The electrostatic/polarization contributions to the solvation free energies were computed using molecular dynamics (MD) simulation and thermodynamic integration techniques, while the nonpolar contributions were taken from the literature. The contribution to the electrostatic/polarization component of the free energy due to nonbonded interactions outside the cutoff radii used in the MD simulations was approximated by a Born solvation term. The experimental free energies were reproduced satisfactorily using variational parameters from the vdW terms as in the original model, in addition to a parameter from the one-electron integral terms. The new one-electron parameter was required to account for the short-range effects of overlapping atomic charge densities. The radial distribution functions obtained from the MD simulations showed the expected H-bonded structures between the ionized solute molecule and solvent molecules. We also obtained satisfactory results by neglecting both the empirical nonpolar term and the electronic polarization of the solute, i.e., by implementing a nonpolarization model. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1028–1038, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号