首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laser photoelectron spectra have been obtained following the preparation of eight vibrational states in S(1) toluene. For four of the vibrational states (up to approximately 550 cm(-1) excess energy) excitation and ionization with nanosecond laser pulses give rise to photoelectron spectra with well-resolved vibrational peaks. For the other states (>750 cm(-1) excess energy) the photoelectron spectra show a loss of structure when nanosecond pulses are used, as a result of intramolecular dynamics [see Whiteside et al., J. Chem. Phys. 123, 204317 (2005), following paper]. A number of vibrational peaks in the photoelectron spectra are assigned, and we find that the common series of ion vibrational peaks observed following the ionization of p-fluorotoluene in various S(1) vibrational states is not reproduced in toluene.  相似文献   

2.
Dispersed transient absorption spectra collected at variable excitation intensities in combination with time-resolved signals were used to explore the underlying connectivity of the electronic excited-state manifold of the carotenoid rhodopin glucoside in the light-harvesting 2 complex isolated from Rhodopseudomonas acidophila. We find that the S state, which was recently identified as an excited state in carotenoids bound in bacterial light-harvesting complexes, exhibits a different response to the increase of excitation intensity than the S(1) state, which suggests that the models used so far to describe the excited states of carotenoids are incomplete. We propose two new models that can describe both the time-resolved and the intensity-dependent data; the first postulates that S(1) and S* are not populated in parallel after the decay of the initially excited S(2) state but instead result from the excitation of distinct ground-state subpopulations. The second model introduces a resonantly enhanced light-induced transition during excitation, which promotes population to higher-lying excited states that favors the formation of S* over S(1). Multiwavelength target analysis of the time-resolved and excitation-intensity dependence measurements were used to characterize the involved states and their responses. We show that both proposed models adequately fit the measured data, although it is not possible to determine which model is most apt. The physical origins and implications of both models are explored.  相似文献   

3.
Thanks to the successive use of two esterases with different regioselectivities and conventional organic chemistry we have synthesized (1R,2S) and (1S,2S) dehydrocoronamic acids.  相似文献   

4.
Dynamics of the excited singlet (both the S2 and S1) states of a ketocyanine dye, namely, 2,5-bis[(2,3-dihydroindolyl)-propylene]-cyclopentanone (KCD), have been investigated in different kinds of media using steady-state absorption and emission as well as femtosecond transient absorption spectroscopic techniques. Steady-state fluorescence measurements, following photoexcitation of KCD to its second excited singlet state, reveal dual fluorescence (emission from both the S2 and S1 states) behavior. Although the intensity of the S2 --> S0 fluorescence is weaker than that of the S1 --> S0 fluorescence in solutions at room temperature (298 K), the former becomes as much as or more intense than the latter in rigid matrixes at 77 K. The lifetime of the S2 state is short and varies between 0.2 and 0.6 ps in different solvents. After its creation, the S2 state undergoes two simultaneous processes, namely, S2 --> S0 fluorescence and S2 --> S1 internal conversion. Time-resolved measurements reveal the presence of an ultrafast component in the decay dynamics of the S1 state. A good correlation between the lifetime of this component and the longitudinal relaxation times (tauL) of the solvents suggests that this component arises due to solvation in polar solvents. More significant evolution of the spectroscopic properties of the S1 state in alcoholic solvents in the ultrafast time domain has been explained by the occurrence of the repositioning of the hydrogen bonds around the carbonyl group in the excited state of KCD. In 2,2,2-trifluoroethanol, a strongly hydrogen bond donating solvent, it has even been possible to establish the existence of two distinct forms of the S1 state, namely, the non-hydrogen-bonded (or free) molecule and the hydrogen-bonded complex.  相似文献   

5.
In this paper, we identify the most efficient decay and isomerization route of the S(1), T(1), and S(0) states of azobenzene. By use of quantum chemical methods, we have searched for the transition states (TS) on the S(1) potential energy surface and for the S(0)/S(1) conical intersections (CIs) that are closer to the minimum energy path on the S(1). We found only one TS, at 60 degrees of CNNC torsion from the E isomer, which requires an activation energy of only 2 kcal/mol. The lowest energy CIs, lying also 2 kcal/mol above the S(1) minimum, were found on the torsion pathway for CNNC angles in the range 95-90 degrees. The lowest CI along the inversion path was found ca. 25 kcal/mol higher than the S(1) minimum and was characterized by a highly asymmetric molecular structure with one NNC angle of 174 degrees. These results indicate that the S(1) state decay involves mainly the torsion route and that the inversion mechanism may play a role only if the molecule is excited with an excess energy of at least 25 kcal/mol with respect to the S(1) minimum of the E isomer. We have calculated the spin-orbit couplings between S(0) and T(1) at several geometries along the CNNC torsion coordinate. These spin-orbit couplings were about 20-30 cm(-)(1) for all the geometries considered. Since the potential energy curves of S(0) and T(1) cross in the region of twisted CNNC angle, these couplings are large enough to ensure that the T(1) lifetime is very short ( approximately 10 ps) and that thermal isomerization can proceed via the nonadiabatic torsion route involving the S(0)-T(1)-S(0) crossing with preexponential factor and activation energy in agreement with the values obtained from kinetic measures.  相似文献   

6.
Sphingosine-1-phosphate-1 (S1P1) receptor agonists are well-known drugs for treating multiple sclerosis (MS) caused by autoreactive lymphocytes that attack the myelin sheath. Therefore, an effective therapeutic strategy is to reduce the lymphocytes in the blood by inducing S1P1 receptor internalization. We synthesized serinolamide A, a natural product of the sea, and performed S1P1 receptor internalization assay to evaluate functionally antagonistic S1P1 receptor agonist activity. In order to synthesize derivatives with better efficacy than serinolamide A and B, new derivatives were synthesized by introducing the phenyl ring moiety of fingolimod. Among them, compounds 19 and 21 had superior S1P1 agonistic effects to serinolamide. We also confirmed that compound 19 effectively inhibited lymphocyte outflow in peripheral lymphocyte count (PLC) assay.  相似文献   

7.
Electronic and vibrational structures in the S(0) (1)A(1) and S(1) (1)A(1) states of jet-cooled phenanthrene-h(10) and phenanthrene-d(10) were analyzed by high-resolution spectroscopy using a tunable nanosecond pulsed laser. The normal vibrational energies and molecular structures were estimated by ab initio calculations with geometry optimization in order to carry out a normal-mode analysis of observed vibronic bands. The rotational structure was analyzed by ultrahigh-resolution spectroscopy using a continuous-wave single-mode laser. It has been demonstrated that the stable geometrical structure is markedly changed upon the S(1) ← S(0) electronic excitation. Nonradiative internal conversion in the S(1) state is expected to be enhanced by this structural change. The observed fluorescence lifetime has been found to be much shorter than the calculated radiative lifetime, indicating that the fluorescence quantum yield is low. The lifetime of phenanthrene-d(10) is longer than that of phenanthrene-h(10) (normal deuterium effect). This fact is in contrast with anthracene, which is a structural isomer of phenanthrene. The lifetime at the S(1) zero-vibrational level of anthracene-d(10) is much shorter than that of anthracene-h(10) (inverse deuterium effect). In phenanthrene, the lifetime becomes monotonically shorter as the vibrational energy increases for both isotopical molecules without marked vibrational dependence. The vibrational structure of the S(0) state is considered to be homogeneous and quasi-continuous (statistical limit) in the S(1) energy region.  相似文献   

8.
Fluorescence excitation spectra of dibenzofuran in a supersonic jet are observed and the vibronic structure is analyzed for the S(1) (1)A(1) (pipi) and S(0) states. An observation of the rotational envelopes reveals that the band is a B-type band. However, it is shown that most of the strong vibronic bands are A-type bands. The intensity arises from vibronic coupling with the S(2) (1)B(2) state. We find a broad emission in the dispersed fluorescence spectrum for the excitation of the high vibrational levels in the S(1) state. This indicates that intramolecular vibrational redistribution (IVR) occurs efficiently in the isolated dibenzofuran molecule.  相似文献   

9.
Ab initio complete active-space self-consistent field (CASSCF) and second-order Multireference M?ller-Plesset perturbation (MRMP2) calculations were performed to examine the S1-S0 internal conversion of 6-cyanoazulene (6CNAZ). The azulene skeletons of 6CNAZ in S0 and S1 have features that resemble those of azulene. The stable geometry in S0 is characterized by (i) a C2v structure, (ii) an aromatic bond-equalized structure in which all the peripheral skeletal bond distances resemble an aromatic CC bond distance, and (iii) a single bond character of the transannular bond. The stable geometry in S1 is characterized by a nonaromatic C2v structure. Contrary to similarities of the stable geometries in S0 and S1 between 6CNAZ and azulene, the conical intersection (S1/S0-CIX) of 6CNAZ is different from that of azulene. The S1/S0-CIX of 6CNAZ takes a planar structure, whereas that of azulene takes a nonplanar structure in the seven-membered ring (Amatatsu, Y.; Komura, K. J. Chem. Phys. 2006, 125, 174311/1-8). On the basis of those computational findings, we predict the photochemical behavior of 6CNAZ in the S1-S0 internal conversion.  相似文献   

10.
We have synthesized a series of (1R,2R,4S,5S,8S)-2,8-diaryl-4-(4-nitrophenyl)-1-aza-3,7-dioxabicyclo[3.3.0]octanes as a result of reaction of (1S,2S)-2-amino-1-(4-nitrophenyl)-1,3-propanediol with aromatic aldehydes. The structure of the compounds obtained was established on the basis of 1H NMR data. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 757–763, May, 2006.  相似文献   

11.
In concert with the recent photoabsorption experiments of gas-phase Schiff-base retinal chromophores (Nielsen et al. Phys. Rev. Lett. 2006, 96, 018304), quantum chemical calculations using time-dependent density functional theory coupled with different functionals and under the Tamm-Dancoff approximation were made on the first two excited states (S1 and S2) of two retinal chromophores: 11-cis and all-trans protonated Schiff bases. The calculated vertical excitation energies (Tv) and oscillator strengths (f) are consistent with the experimental absorption bands. The experimentally observed phenomenon that the transition dipole moment (mu) of S2 is much smaller that of S1 was interpreted by 3D representation of transition densities. The different optical behaviors (linear and nonlinear optical responds) of the excited states were investigated by considering different strengths of external electric fields.  相似文献   

12.
A special xenon matrix detector has been used to study the production of S(1S) following controlled electron impact on thiophosgene (Cl2CS) targets over an electron energy range from threshold to 400 eV. Time-of-flight spectroscopy has been used to measure S(1S) fragment kinetic energies. Fragments with energies in excess of 1 eV have been observed. The absolute cross section for S(1S) production reaches a maximum of [1.05+/-0.35] x 10(-18) cm2 at approximately 125 eV impact energy. Two different fragmentation processes, involving triplet and singlet excited states of the parent Cl2CS molecule, have been identified.  相似文献   

13.
We present here a combined experimental and computational investigation into the photorearrangement of N-cyclopropylimines to yield pyrrolines. We show that the photochemistry, regiochemistry, and stereochemistry of the reaction can be understood in terms of a mechanism involving barrierless evolution in three different (S(2), S(1), S(0)) singlet states and sequential decay through two different (S(2)/S(1), and S(1)/S(0)) conical intersection funnels. We provide evidence that the reaction mechanism involves the generation of a nonequilibrated (i.e., transient) excited state diradical, whose decay can lead not only to pyrrolines but also to cyclopropylimine isomers. It is concluded that the reaction outcome depends on the details of the structure of such transient diradical and on the nature of the dynamics of its decay through the S(1)/S(0) conical intersection.  相似文献   

14.
Biotransformation of (1S)-2-carene and (1S)-3-carene by Picea abies suspension culture led to the formation of oxygenated products. (1S)-2-Carene was transformed slowly and the final product was identified as (1S)-2-caren-4-one. On the other hand, the transformation of (1S)-3-carene was rapid and finally led to the formation of (1S)-3-caren-5-one and (1S)-2-caren-4-one as equally abundant major products. The time-course of the reaction indicates that some products abundant at the beginning of the reaction (e.g. (1S, 3S, 4R)-3,4-epoxycarane and (1R)-p-mentha-1(7),2-dien-8-ol) were consumed by a subsequent transformations. Thus, a precise selection of the biotransformation time may be used for a production of specific compounds.  相似文献   

15.
在温和的条件下制备了负载型3%(w)Ir/SiO2/2TPP(三苯基膦)催化剂, 并且考察了(1S,2S)-1,2-二苯基乙二胺[(1S,2S)-DPEN]作为手性修饰剂对其催化苄叉丙酮不对称加氢反应性能的影响. 结果表明, 手性修饰剂(1S,2S)-DPEN的加入, 对苄叉丙酮不对称加氢反应活性和C=O加氢的选择性都有很好的促进作用. 经优化条件, 在40 ℃下, LiOH浓度为0.375 mol·L-1的甲醇溶液中, 氢气压力为6 MPa, 反应8 h后, 苄叉丙酮的转化率大于99.0%, 对不饱和醇的选择性大于99.0%, 不饱和醇的对映选择性(ee)值达到48.1%.  相似文献   

16.
We report a femtosecond time-resolved fluorescence study of cis-stilbene, a prototypical molecule showing ultrafast olefinic photoisomerization and photocyclization. The time-resolved fluorescence signals were measured in a nonpolar solvent over a wide ultraviolet-visible region with excitation at 270 nm. The time-resolved fluorescence traces exhibit non-single exponential decays which are well fit with bi-exponential functions with time constants of τ(A) = 0.23 ps and τ(B) = 1.2 ps, and they are associated with the fluorescence emitted from different regions of the S(1) potential energy surface (PES) in the course of the structural change. Quantitative analysis revealed that the two fluorescent components exhibit similar intrinsic time-resolved spectra extending from 320 nm to 700 nm with the (fluorescence) oscillator strength of f(A) = 0.32 and f(B) = 0.21, respectively. It was concluded that the first component is assignable to the fluorescence from the untwisted S(1) PES region where the molecule reaches immediately after the initial elongation of the central C[double bond, length as m-dash]C bond, while the second component is the fluorescence from the substantially twisted region around a shallow S(1) potential minimum. The quantitative analysis of the femtosecond fluorescence data clearly showed that the whole isomerization process proceeds in the one-photon allowed S(1) state, thereby resolving a recent controversy in quantum chemical calculations about the reactive S(1) state. In addition, the evaluated oscillator strengths suggest that the population branching into the isomerization/cyclization pathways occurs in a very early stage when the S(1) molecule still retains a planar Ph-C[double bond, length as m-dash]C-Ph skeletal structure. On the basis of the results obtained, we discuss the dynamics and mechanism of the isomerization/cyclization reactions of cis-stilbene, as well as the electronic structure of the reaction precursor.  相似文献   

17.
We used time-dependent density-functional-theory (TDDFT) approaches to calculate absorption (S(0)-->S(1)) and emission (S(1)-->S(0)) transition energies of poly(p-phenylene vinylene) (PPV). The absorption and emission energies were estimated to be 2.44 and 2.16 eV, respectively, from the extrapolation of calculated results for oligomers. Comparisons with available experimental data demonstrated that TDDFT is a very reliable tool for investigating the electronic transitions of PPV.  相似文献   

18.
Microbial transformation of 1-menthol (1) by six isolates of soil-borne plant pathogenic fungi Rhizoctonia solani AG-1-IA (Rs24, Joichi-2 and RRG97-1) and AG-1-IB (TR22, R147 and 110.4) as a biocatalyst was investigated. Twenty one days precultivation of Rhizoctonia solani AG-1-IA Rs24 and AG-1-IB 110.4 showed excellent yield (98.5-98.6%) of (-)-(1S,3R,4S,6S)-6-hydroxymenthol (2) and (-)-(1S,3R,4S)-1-hydroxymenthol (3) from 1.  相似文献   

19.
S(0), S(1), and T(1) states of various orthogonal 8,8' and 8,2'-bis-boradiaza-s-indacene (BODIPY) dyes, recently (Angew. Chem., Int. Ed.2011, 50, 11937) proposed as heavy atom free photosensitizers for O(2)((1)Δ(g)) generation, were studied by multireference quantum chemical approaches. S(0)→S(1) excitation characteristics of certain bis-BODIPYs are shown to be drastically different than the parent BODIPY chromophore. Whereas a simple HOMO→LUMO-type single substitution perfectly accounts for the BODIPY core, S(1) states of certain orthogonal bis-BODIPYs are described as linear combinations of doubly substituted (DS) configurations which overall yield four electrons in four singly occupied orbitals. Computed DS character of S(1), strongly correlated with facile (1)O(2) production, was presumed to occur via S(1)→T(1) intersystem crossing (ISC) of the sensitizer. Further confirmation of this relation was provided by newly synthesized BODIPY derivatives and comparison of spectroscopic properties of their dimers and monomers. Near-IR absorption, desired for potential photodynamic therapy applications, was not pursuable for bis-chromophores by the standard strategy of π-extension, as DS singlet states are destabilized. Decreased exchange coupling in π-extended cases appears to be responsible for this destabilization. Comparisons with iodine incorporated bis-BODIPYs suggest that the dynamics of (1)O(2) generation via DS S(1) states are qualitatively different from that via ISC originating from heavy atom spin-orbit coupling. Although red-shifting the absorption wavelength to enter the therapeutic window does not seem attainable for orthogonal bis-BODIPYs with DS S(1) states, modifications in the chromophore cores are shown to be promising in fine-tuning the excitation characteristics.  相似文献   

20.
Rotationally resolved fluorescence excitation spectra of the S1 <-- S0 origin bands and higher vibronic bands of fluorene (FLU), carbazole (CAR), and dibenzofuran (DBF) have been observed and assigned. Analyses of these data show that replacement of the CH2 group in FLU with a NH group in CAR and an O atom in DBF produces only localized changes in structure, in the ground state. But the three molecules exhibit different changes in geometry when they are excited by light. The S1 states of the three molecules also are electronically very different. The S1 <-- S0 transition moments of CAR and DBF are parallel to the C2 symmetry axis whereas the corresponding transition moment in FLU is perpendicular to this axis. Herzberg-Teller coupling involving the S2 state also has been observed in the spectra of higher vibronic bands of CAR and DBF. Possible reasons for these behaviors are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号