首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In the present work, the novel methodology of reversed-flow gas chromatography (RF-GC) is extended in a topic of contemporary scientific and technological interest, such as the effect of hydrogen in the "topography" of the active sites related to CO adsorption. This study concerns CO adsorption on a silica-supported Rh catalyst, at 90 degrees C. The topography of the catalyst in the absence of hydrogen consists of both randomly and islands of CO bound over chemisorbed CO molecules. In contrast, under H2-rich conditions, the observed topography is almost entirely patchwise ascribed to long-range lateral attractions between adsorbate molecules. In excess of hydrogen, CO adsorption is shifted at higher lateral attractions values which correspond to weaker adsorbate-adsorbent interactions and lower surface coverage. This provides an indication of a H2-induced desorption, which can be attributed to the formation of an H-CO complex desorbing from the catalyst surface below the temperature required for CO desorption, in the absence of H2, and it may explain the well-known enhancement of the rate of selective CO oxidation in excess of hydrogen by H2.  相似文献   

2.
Pd催化甲醇裂解制氢的反应机理   总被引:1,自引:0,他引:1  
基于密度泛函理论(DFT), 研究了甲醇在Pd(111)面上首先发生O—H键断裂的反应历程(CH3OH(s)→CH3O(s)+H(s)→CH2O(s)+2H(s)→CHO(s)+3H(s)→CO(s)+4H(s)). 优化了裂解过程中各反应物、中间体、过渡态和产物的几何构型, 获得了反应路径上各物种的吸附能及各基元反应的活化能数据. 另外, 对甲醇发生C—O键断裂生成CH3(s)和OH(s)的分解过程也进行了模拟计算. 计算结果表明, O—H键的断裂(活化能为103.1 kJ·mol-1)比C—O键的断裂(活化能为249.3 kJ·mol-1)更容易; 甲醇在Pd(111)面上裂解的主要反应历程是: 甲醇首先发生O—H键的断裂, 生成甲氧基中间体(CH3O(s)), 然后甲氧基中间体再逐步脱氢生成CO(s)和H(s). 甲醇发生O—H键断裂的活化能为103.1 kJ·mol-1, 甲氧基上脱氢的活化能为106.7 kJ·mol-1, 两者均有可能是整个裂解反应的速控步骤.  相似文献   

3.
傅钢  吕鑫  徐昕  万惠霖 《分子催化》2001,15(6):484-486
应用UBI-QEP方法, 估算了CO2-在金属表面的吸附热, 并计算了CO2在Cu(111)、Pd(111)、Fe(111)、Ni(111)表面的各种反应途径的活化能垒. 结果表明, CO2-在4种过渡金属表面相对的稳定性和CO2解离吸附的活性顺序一致,均为Fe>Ni>Cu>Pd. 说明CO2-可能是CO2解离吸附的关键中间体. 在Cu、Pd、Ni表面上, CO2解离吸附的最终产物是CO,而在Fe表面其最终会解离成C和O. 在Cu、Fe、Ni表面, CO2加氢活化是一种有效模式, 而在Pd上则不容易进行. 在Cu和Pd表面,碳酸盐物种也可能是CO2活化的重要中间体.  相似文献   

4.
《Progress in Surface Science》2006,81(8-9):337-366
Recent progress on desorption and adsorption dynamics of hydrogen (deuterium) on monohydride and dihydride Si(1 0 0) surfaces is reviewed and discussed. The dynamics experiments reveal that the desorption dynamics of hydrogen is well related to the adsorption dynamics via detailed balance. Dependence of time-of-flight (TOF) distributions of desorbed molecules on H(D) coverage is noticed to be important in understanding the kinetics mechanism of the adsorption/desorption reactions of hydrogen on the Si(1 0 0) surface. The desorption dynamics varies from the situation of strongly translational heating to the other situation of less translational heating with D coverage. This trend seems to be consistent with the 2H/3H/4H interdimer mechanism. However, despites by far the richest 4H configuration at high H coverage, the 2H desorption prevails over the 4H desorption already at 0.8 ML. To reconcile this unexpected desorption kinetics, a diffusion-promoted desorption mechanism is proposed. Height of the adsorption barriers for the 2H and 3H pathways could be reduced by the H-atom diffusion along the Si dimer rows, but that for the 4H pathway could not be the case because of no capability of diffusion on the H saturated surface. The desorption dynamics of hydrogen from the (3 × 1) dihydride surface is also reviewed and compared with the case on the monohydride surface. The sticking coefficients of hydrogen molecules onto the monohydride surfaces are evaluated from the TOF curves and found to be strongly activated by the kinetic energy. Not only the degrees of freedom of the molecules but also the vibrational degrees of freedom of substrate Si atoms determine the barrier height for adsorption. The desorption dynamics of hydrogen from the monohydride and dihydride surfaces appears to be quite similar, but the dynamics of substrate Si atoms is expected to be quite dissimilar between the two desorption pathways.  相似文献   

5.
Highly energetic translational energy distributions are reported for hydrogen and deuterium molecules desorbing associatively from the atomic chemisorption states on highly oriented pyrolytic graphite (HOPG). Laser assisted associative desorption is used to measure the time of flight of molecules desorbing from a hydrogen (deuterium) saturated HOPG surface produced by atomic exposure from a thermal atom source at around 2100 K. The translational energy distributions normal to the surface are very broad, from approximately 0.5 to approximately 3 eV, with a peak at approximately 1.3 eV. The highest translational energy measured is close to the theoretically predicted barrier height. The angular distribution of the desorbing molecules is sharply peaked along the surface normal and is consistent with thermal broadening contributing to energy release parallel to the surface. All results are in qualitative agreement with recent density functional theory calculations suggesting a lowest energy para-type dimer recombination path.  相似文献   

6.
The formation and adsorption of CO from CO(2) and H(2) at high pressures were studied over alumina-supported noble metal catalysts (Pt, Pd, Rh, Ru) by in situ FTIR measurements. To examine the effects of surface structure of supported metal particles and water vapor on the CO adsorption, FTIR spectra were collected at 323 K with untreated and heat (673 K) treated catalysts in the absence and presence of water (H(2)O, D(2)O). It was observed that the adsorption of CO occurred on all the metal catalysts at high pressures, some CO species still remained adsorbed under ambient conditions after the high pressure FTIR measurements, and the frequencies of the adsorbed CO species were lower either for the heat treated samples or in the presence of water vapor. It is assumed that the CO absorption bands on atomically smoother surfaces appear at lower frequencies and that water molecules are adsorbed more preferentially on atomically rough surfaces rather than CO species.  相似文献   

7.
The spatial distribution of desorbing O(2) and CO(2) was examined in 193-nm photoinduced reactions in O(2)+CO adlayers on stepped Pt (112)=[(s)3(111)x(001)]. The O(2) desorption collimated in inclined ways in the plane along the surface trough, confirming the hot-atom collision mechanism. In the presence of CO(a), the product CO(2) desorption also collimated in an inclined way, whereas the inclined O(2) desorption was suppressed. The inclined O(2) and CO(2) desorption is explained by a common collision-induced desorption model. At high O(2) coverage, the CO(2) desorption collimated closely along the (111) terrace normal.  相似文献   

8.
Thermochemical parameters of carbonic acid and the stationary points on the neutral hydration pathways of carbon dioxide, CO 2 + nH 2O --> H 2CO 3 + ( n - 1)H 2O, with n = 1, 2, 3, and 4, were calculated using geometries optimized at the MP2/aug-cc-pVTZ level. Coupled-cluster theory (CCSD(T)) energies were extrapolated to the complete basis set limit in most cases and then used to evaluate heats of formation. A high energy barrier of approximately 50 kcal/mol was predicted for the addition of one water molecule to CO 2 ( n = 1). This barrier is lowered in cyclic H-bonded systems of CO 2 with water dimer and water trimer in which preassociation complexes are formed with binding energies of approximately 7 and 15 kcal/mol, respectively. For n = 2, a trimeric six-member cyclic transition state has an energy barrier of approximately 33 (gas phase) and a free energy barrier of approximately 31 (in a continuum solvent model of water at 298 K) kcal/mol, relative to the precomplex. For n = 3, two reactive pathways are possible with the first having all three water molecules involved in hydrogen transfer via an eight-member cycle, and in the second, the third water molecule is not directly involved in the hydrogen transfer but solvates the n = 2 transition state. In the gas phase, the two transition states have comparable energies of approximately 15 kcal/mol relative to separated reactants. The first path is favored over in aqueous solution by approximately 5 kcal/mol in free energy due to the formation of a structure resembling a (HCO 3 (-)/H 3OH 2O (+)) ion pair. Bulk solvation reduces the free energy barrier of the first path by approximately 10 kcal/mol for a free energy barrier of approximately 22 kcal/mol for the (CO 2 + 3H 2O) aq reaction. For n = 4, the transition state, in which a three-water chain takes part in the hydrogen transfer while the fourth water microsolvates the cluster, is energetically more favored than transition states incorporating two or four active water molecules. An energy barrier of approximately 20 (gas phase) and a free energy barrier of approximately 19 (in water) kcal/mol were derived for the CO 2 + 4H 2O reaction, and again formation of an ion pair is important. The calculated results confirm the crucial role of direct participation of three water molecules ( n = 3) in the eight-member cyclic TS for the CO 2 hydration reaction. Carbonic acid and its water complexes are consistently higher in energy (by approximately 6-7 kcal/mol) than the corresponding CO 2 complexes and can undergo more facile water-assisted dehydration processes.  相似文献   

9.
The angular and velocity distributions of desorbing products were analyzed in the course of a catalyzed N2O + CO reaction on Pd(110). The reaction proceeded steadily above 450 K, and the N2 desorption merely collimated sharply along 45 degrees off the surface normal toward the [001] direction. It is proposed that this peculiar N2 desorption is induced by the decomposition of adsorbed N2O oriented along the [001] direction. On the basis of the observation of similar inclined N2 desorption in both NO + CO and N2O + CO reactions, the N2 formation via the intermediate N2Oa dissociation was confirmed in catalytic NO reduction.  相似文献   

10.
Carbon monoxide can adsorb specifically on Pd(111) to induce the formation of unique Pd nanostructures. In the copresence of CO and H(2), single-crystalline Pd tetrapod nanocrystals have now been successfully prepared. The Pd tetrapods are enclosed by (111) surfaces and are yielded through hydride formation. Density functional theory calculations revealed that the formation of PdH(x) in the presence of H(2) reduces the binding energy of CO on Pd and thus helps to decrease the CO coverage during the synthesis, which is essential to the formation of the PdH(x) tetrapod nanocrystals. In addition to tetrapod nanocrystals, tetrahedral nanocrystals were also produced in the copresence of CO and H(2) when the reaction temperature was ramped to further lower the CO coverage. Upon aging in air, the as-prepared PdH(x) nanocrystals exhibited a shape-dependent hydrogen releasing behavior. The conversion rate of PdH(x) tetrapod nanocrystals into metallic Pd was faster than that of tetrahedral nanocrystals.  相似文献   

11.
钙改性的Pd/CeO2-ZrO2-Al2O3催化剂催化甲醇裂解反应   总被引:1,自引:0,他引:1  
李雪  王晓文  赵明  刘建英  龚茂初  陈耀强 《催化学报》2011,32(11):1739-1746
采用共沉淀法制备了未改性的和Ca掺杂的CeO2-ZrO2-Al2O3样品,进一步用浸渍法制备了Pd/CeO2-ZrO2-Al2O3(Pd/CZA)和Pd/CeO2-ZrO2-Al2O3-CaO (Pd/CZACa)催化剂.运用X射线衍射、N2吸附-脱附、储氧量测定、CO化学吸附、NH3程序升温脱附、CO2程序升温脱附、...  相似文献   

12.
CO2在金属表面活化的UBI-QEP方法研究   总被引:1,自引:0,他引:1  
应用UBI-QEP方法估算了金属表面上形成的活化吸附态CO2-在Cu(111),Pd(111),Fe(111)和Ni(111)表面上的吸附热,计算了各种相关反应的活化能垒.结果表明,CO2-在4种过渡金属表面的相对稳定性的顺序为Fe>Ni>Cu>Pd;在Fe和Ni表面上CO2-较易生成,且容易进一步发生解离反应,在Fe表面会解离成C和O吸附原子,而在Ni表面上解离的最终产物为CO和O;在Cu表面上,CO2-虽较难形成,但其加氢反应的活化能比解离反应低,因此加氢反应是其进一步活化的有效模式;在Pd表面上,CO2-吸附态在能量上很不稳定,所以CO2在Pd表面上不容易活化.  相似文献   

13.
The coadsorption of C2H4 with H2 and CO on Pd(111) has been investigated at 300 and 330 K At 300 K two forms of adsorbed ethylene coexist on the surface in the presence of ethylene gas: a molecular form desorbing as C2H4 at 330 K and a dissociatively adsorbed form (giving only hydrogen in desorption spectra) which is stable both in vacuum and in hydrogen at 10?8 Torr. The molecular form seems to be a precursor state for hydrogenation and for dissociative adsorption. Both processes are controlled by the amount of coadsorbed hydrogen which in turn is controlled by CO coverage.  相似文献   

14.
The angular distribution of desorbing N(2) was studied in both the thermal decomposition of N(2)O(a) on Rh(100) at 60-140 K and the steady-state NO (or N(2)O) + D(2) reaction on Rh(100) and Rh(110) at 280-900 K. In the former, N(2) desorption shows two peaks at around 85 and 110 K. At low N(2)O coverage, the desorption at 85 K collimates at about 66 degrees off normal towards the [001] direction, whereas at high coverage, it sharply collimates along the surface normal. In the NO reduction on Rh(100), the N(2) desorption preferentially collimates at around 71 degrees off normal towards the [001] direction below about 700 K, whereas it collimates predominantly along the surface normal at higher temperatures. At lower temperatures, the surface nitrogen removal in the NO reduction is due to the process of NO(a) + N(a) --> N(2)O(a) --> N(2)(g) + O(a). On the other hand, in the steady-state N(2)O + D(2) reaction on Rh(110), the N(2) desorption collimates closely along the [001] direction (close to the surface parallel) below 340 K and shifts to ca. 65 degrees off normal at higher temperatures. In the reduction with CO, the N(2) desorption collimates along around 65 degrees off normal towards the [001] direction above 520 K, and shifts to 45 degrees at 445 K with decreasing surface temperature. It is proposed that N(2)O is oriented along the [001] direction on both surfaces before dissociation and the emitted N(2) is not scattered by adsorbed hydrogen.  相似文献   

15.
Methanation of CO over nickel: Mechanism and kinetics at high H2/CO ratios   总被引:3,自引:0,他引:3  
The CO methanation reaction over nickel was studied at low CO concentrations and at hydrogen pressures slightly above ambient pressure. The kinetics of this reaction is well described by a first-order expression with CO dissociation at the nickel surface as the rate-determining step. At very low CO concentrations, adsorption of CO molecules and H atoms compete for the sites at the surface, whereas the coverage of CO is close to unity at higher CO pressures. The ratio of the equilibrium constants for CO and H atom adsorption, K(CO)/K(H), was obtained from the rate of CO methanation at various CO concentrations. K(H) was determined independently from temperature programmed adsorption/desorption of hydrogen to be K(H) = 7.7 x 10(-4) (bar(-0.5)) exp[43 (kJ/mol)/RT] and hence the equilibrium constants for adsorption of CO molecules may be calculated to be K(CO) = 3 x 10(-7) (bar(-1)) exp[122 (kJ/mol)/RT]. Furthermore, the rate of dissociation of CO at the catalyst surface was determined to be 5 x 10(9) (s(-1)) exp[-96.7 (kJ/mol)/RT] assuming that 5% of the surface nickel atoms are active for CO dissociation. The results are compared to equilibrium and rate constants reported in the literature.  相似文献   

16.
We have investigated the effect of co-absorbed CO and reaction temperature on the angular distribution of N(2) desorption by N(2)O decomposition under the steady state of N(2)O-CO reaction on Rh(110). Spatial distributions of desorbing product N(2) emission have been measured at various surface temperatures and CO coverages. The decomposed N(2) collimates at 48°-61° off normal in the parallel plane to [001] and [110] directions, indicating that adsorbed N(2)O just before the decomposition is oriented along the [001] direction. Although the inclined and collimated N(2) desorption is always observed at any steady-state CO coverage and reaction temperature, the shape of the collimated N(2) distribution varied dependent on the co-adsorbed CO coverage. The distribution becomes sharp and shifts toward the surface normal direction with increasing CO coverage. These effects of adsorbed CO on the angular distribution of N(2) are interpreted by the collision of desorbed N(2) with co-adsorbed CO.  相似文献   

17.
Electron-stimulated reactions in thin [<3 ML (monolayer)] water films adsorbed on TiO(2)(110) are investigated. Irradiation with 100 eV electrons results in electron-stimulated dissociation and electron-stimulated desorption (ESD) of adsorbed water molecules. The molecular water ESD yield increases linearly with water coverage theta for 0< or =theta< or =1 ML and 11 ML, the water ESD yield per additional water molecule adsorbed (i.e., the slope of the ESD yield versus coverage) is 3.5 times larger than for theta<1 ML. In contrast, the number of water molecules dissociated per incident electron increases linearly for theta< or =2 ML without changing slope at theta=1 ML. The total electron-stimulated sputtering rate, as measured by postirradiation temperature programmed desorption of the remaining water, is larger for theta>1 ML due to the increased water ESD for those coverages. The water ESD yields versus electron energy (for 5-50 eV) are qualitatively similar for 1, 2, and 40 ML water films. In each case, the observed ESD threshold is at approximately 10 eV and the yield increases monotonically with increasing electron energy. The results indicate that excitations in the adsorbed water layer are primarily responsible for the ESD in thin water films on TiO(2)(110). Experiments on "isotopically layered" films with D(2)O adsorbed on the Ti(4+) sites (D(2)O(Ti)) and H(2)O adsorbed on the bridging oxygen atoms (H(2)O(BBO)) demonstrate that increasing the water coverage above 1 ML rapidly suppresses the electron-stimulated desorption of D(2)O(Ti) and D atoms, despite the fact that the total water ESD and atomic hydrogen ESD yields increase with increasing coverage. The coverage dependence of the electron-stimulated reactions is probably related to the different bonding geometries for H(2)O(Ti) and H(2)O(BBO) and its influence on the desorption probability of the reaction products.  相似文献   

18.
In this work we have studied the steady-state reaction of molecular and atomic hydrogen with oxygen on a Pd(111) surface at a low total pressure (<10(-7) mbar) and at sample temperatures ranging from 100 to 1100 K. Characteristic features of the water formation rate Phi(pH2; pO2; TPd) are presented and discussed, including effects that are due to the use of gas-phase atomic hydrogen for exposure. Optimum impingement ratios (OIR) for hydrogen and oxygen for water formation and their dependence on the sample temperature have been determined. The occurring shift in the OIR could be ascribed to the temperature dependence of the sticking coefficients for hydrogen (SH2) and oxygen (SO2) on Pd(111). Using gas-phase atomic hydrogen for water formation leads to an increase of the OIR, suggesting that hydrogen abstraction via hot-atom reactions competes with H2O formation. The velocity distributions of the desorbing water molecules formed on the Pd(111) surface have been measured by time-of-flight spectroscopy under various conditions, using either gas-phase H atoms or molecular H2 as reactants. In all cases, the desorbing water flux could be represented by a Maxwellian distribution corresponding to the surface temperature, thus giving direct evidence for a Langmuir-Hinshelwood mechanism for water formation on Pd(111).  相似文献   

19.
We have used density functional theory to investigate hydrogen desorption from SiGe alloy surfaces, and the effect of Ge alloying on the kinetics of hydrogen desorption via the prepairing and interdimer mechanisms. We find that the calculated activation barriers of the prepairing mechanism are affected by the surface atom bonded to the desorbing hydrogen atoms. On the other hand, our calculations show that the activation barrier for hydrogen desorption via the 2H interdimer mechanism is affected by all four surface atoms of the two neighboring dimers. For the 4H interdimer mechanism, we have shown that the activation barrier for hydrogen desorption is not significantly higher than the endothermicity of hydrogen desorption. We also find that the calculated activation barriers of the interdimer mechanisms are generally lower than those of the prepairing mechanism. In addition, our calculations show that surface Ge atoms on neighboring dimers on SiGe alloy surfaces have a minor effect on the calculated activation barriers of both the prepairing and interdimer mechanisms, which indicates that the effect of Ge alloying on hydrogen desorption is local in nature. We also discuss the effects of cluster size and constraints on the calculated reaction energies and activation barriers of hydrogen desorption via the two mechanisms.  相似文献   

20.
The adsorption and thermal desorption of Zn and ZnO on Pd(111) was studied in the temperature range between 300 and 1300 K with TDS, LEED, and CO adsorption measurements. At temperatures below 400 K, multilayer growth of Zn metal on the Pd(111) surface takes place. At a coverage of 0.75 ML of Zn, a p(2 x 2)-3Zn LEED structure is observed. Increasing the coverage to 3 ML results in a (1 x 1) LEED pattern arising from an ordered Zn multilayer on Pd(111). Thermal desorption of the Zn multilayer state leads to two distinct Zn desorption peaks: a low-temperature desorption peak (400-650 K) arising from upper Zn layers and a second peak (800-1300 K) originating from the residual 1 ML Zn overlayer, which is more strongly bound to the Pd(111) surface and blocks CO adsorption completely. Above 650 K, this Zn adlayer diffuses into the subsurface region and the surface is depleted in Zn, as can be deduced from an increased amount of CO adsorption sites. Deposition of >3 ML of Zn at 750 K leads to the formation of a well-ordered Pd-Zn alloy exhibiting a (6 x 4 square root 3/3)rect. LEED structure. CO adsorption measurements on this surface alloy indicate a high Pd surface concentration and a strong reduction of the CO adsorption energy. Deposition of Zn at T > 373 K in 10(-6) mbar of O2 leads to the formation of an epitaxial (6 x 6) ZnO overlayer on Pd(111). Dissociative desorption of ZnO from this overlayer occurs quantitatively both with respect to Zn and O2 above 750 K, providing a reliable calibration for both ZnO, Zn, and oxygen coverage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号