首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the magnetic and electronic properties of single aluminum and silicon atom added to small carbon clusters (CnX; X = Al, Si; n = 2–10) are studied in the framework of generalized-gradient approximation using density functional theory. The calculations were performed for linear, two dimensional and three dimensional clusters based on full-potential local-orbital (FPLO) method. The total energies, HOMO–LUMO energy gap and total magnetic moments of the most stable structures are presented in this work. The calculations show that CnSi clusters have more stability compared to CnAl clusters. In addition, our magnetic calculations were shown that the CnAl isomers are magnetic objects whereas CnSi clusters are nonmagnetic objects.  相似文献   

2.
The geometric structures, relative stabilities, magnetic properties of Mo-doped gold clusters Au n Mo(n = 1–10) have been investigated at the PBE1PBE/def2TZVP level of theory. The results show that molybdenum doping has a significant effect on the geometric structures and electronic properties of Au n Mo(n = 1–10) clusters. For the lowest energy structures of Au n Mo(n = 1–10), the two dimensional to three dimensional transition occurs at cluster size n ≥ 8, and their relative stabilities exhibit odd–even oscillation with the change of Au atom number. It is found that charge in corresponding Au n Mo clusters transfers from Mo atom to Au n host in the size range n = 1–7, whereas the charge in opposition direction in the size range n = 8–10. In addition, the magnetic properties of Au n Mo clusters are enhanced after doping single Mo atom into the corresponding gold clusters. Our results are valuable for the design of magnetic material.  相似文献   

3.
A DFT method with the B3LYP functional and the 6-311++G(d,p) diffuse basis set is used to predict geometries, relative stabilities, electronic structures, and the bonding of closo- and nido-GamBnmH n 2? , GemBnmH n m?2 , and AsmBnmH n 2 m?2 (n = 10, 12 and m = 1, 2) Clusters are obtained by replacing BH with isolobal GaH, GeH+, and AsH2+ fragments, keeping the same skeleton electron pairs (SEP). Based on the polyhedral skeletal electron pairs theory (PSEPT), closo and nido structures are predicted and can be of significant interest for experimentalists working in the field of heteroboranes. Different cluster stabilities are studied according to Gimarc′s and Williams′ rules, where our calculations show that the monosubstituted clusters deviate from these rules, giving rise to open structures. As2B8H n 2+ as 10-vertex structures lead to nido-type clusters, however, GemBnmH n m?2 (n = 10, 12 and m = 1, 2) give rise to closo isomers with close energies. All optimized structures exhibit large HOMO–LUMO gaps suggesting a good kinetic stability, thus predicting their isolation and characterization.  相似文献   

4.
A systematic quantum chemical investigation on the geometric, energetic, electronic and magnetic properties of vanadium-copper nanoalloy clusters (n = 1–12) is performed by using BPW91/LanL2DZ calculations. The calculated results show that the structural evolution of Cu n V clusters favors a compact and icosahedral growth pattern and V atom favors occupying the most highly coordinated position. Energetic properties show that doping of one V atom contributes to strengthening the stability of the copper clusters with the growth of the clusters. The stacking mode of clusters apparently has a more important effect on the clusters stability than the electronic structure. However, electronic structures have some contribution to the stability of Cu n V clusters as well. The electronic properties of Cu n V are analyzed through vertical ionization potential (VIP), vertical electron affinity (VEA) and chemical hardness (η). The magnetism calculations show that when doping V atom in copper clusters, the cluster system generate a very large magnetic moment and its contribution mainly comes from the 3d orbital of doping-V atom.  相似文献   

5.
In order to find single source precursors (SSP), the structures, relative stabilities, and IR spectra of small asymmetric clusters (HFInN3) n (n = 1–6) are systematically investigated by means of the density functional theory at the B3LYP level. The obtained geometries show that the frameworks of clusters (HFInN3) n (n = 2–6) prefer to be 2n-membered ring with alternating indium and α-nitrogen atoms. The averaged binding energies reveal that all of asymmetric clusters (HFInN3) n (n = 1–6) can continue to gain energy as the cluster size n increasing. The second-order difference of energy (Δ2E) and the HOMO-LUMO energy gap (Egap) as a function of the cluster size n both exhibit a pronounced even-odd alternation phenomenon. The influences of cluster size n and temperature T on the thermodynamic properties of clusters are discussed. Judged by enthalpies and Gibbs free energies, the formations of the most stable clusters (HFInN3) n (n = 2–6) from the monomer are thermodynamically favorable in the range of 200–800 K.  相似文献   

6.
The geometrical structures, relative electronic and magnetic properties of small AlnCo (1 ≤ n ≤ 9) clusters are systematically investigated within the framework of density functional theory at the BPW91 level. The single Co doping can dramatically affect the ground state geometries of the 1 Aln+1- clusters. At the same time, the resulting geometries show that the lowest energy AlnCo clusters prefer to be three dimensional structures. Here, the relative stabilities are investigated in terms of the calculated average binding energies, fragmentation energies, and second-order energy differences. Moreover, the result of the highest occupiedlowest unoccupied molecular orbital energy gaps indicates that Al6Co clusters have the highest chemical stability for AlnCo (1 ≤ n ≤ 9) clusters. Furthermore, the natural population analysis reveals that the charges in AlnCo clusters transfer from the Al frames to the Co atom. Additionally, the analyses of the local and total magnetic moments of the AlnCo clusters show that the magnetic effect mainly comes from the Co atom.  相似文献   

7.
The structures, relative stabilities, and electronic properties of pure Si n and Cs-doped silicon clusters (n = 2–12) are systematically investigated using the density functional theory at the B3LYP level. The optimized structures indicated that the lowest-energy structures of CsSi n are similar to those of pure Si n clusters and prefer the 3-dimensional configuration for n = 3–12. The relative stabilities of CsSi n clusters are analyzed based on the averaged binding energy, fragmentation energy, second-order energy difference, and HOMO–LUMO energy gap. It is found that CsSi6 and CsSi9 are the magic clusters, and the doping of Cs atom reduces the chemical stabilities of Si n frame. The Mulliken population analysis pointed out that the charges in the corresponding CsSi n clusters always transfer from Cs atom to Si n host in the range of 0.80–0.91 electron. In addition, the partial density of states, infrared, and Raman spectra is discussed.  相似文献   

8.
The structure, energetics, and physical properties, including rotational constants, characteristic vibrational temperatures, dipole moment, static polarizability, HOMO-LUMO gap, formation enthalpy and collision diameter of different isomeric forms of atomic Al n H m and B n H m clusters with n = 1..4 and all feasible m numbers are studied within the density functional theory framework. The search of isomer structures has been accomplished using multistep hierarchical algorithm. Temperature dependences of thermodynamic functions (enthalpy, entropy and specific heat capacity) have been calculated both for the individual isomers and for the ensemble of isomers with equilibrium composition for each class of clusters, taking into account the anharmonicity of cluster vibrations and the contribution of excited electronic states. The prospects of the application of small atomic Al n H m and B n H m clusters as the components of energetic and hydrogen storage materials are also discussed.  相似文献   

9.
The optimized spatial structure and calculated electronic spectra of anionic clusters HfSi n ? (n = 6–20) are presented. The calculations have been performed by the density functional theory method. By comparing the calculated and available experimental data, the spatial structures of the clusters detected in the experiment have been determined. It has been established that the formation of endohedral structures begins with n = 12, when a stable structure of a prism encapsulating a hafnium atom is formed. Clusters with n = 12 and 16 have increased stability and are basic for the construction of clusters with a close number of silicon atoms.  相似文献   

10.
The formation of W x O y +●/-● clusters in the gas phase was studied by laser desorption ionization (LDI) and matrix assisted laser desorption ionization (MALDI) of solid WO3. LDI produced (WO3) n + ●/- ● (n = 1-7) clusters. In MALDI, when using nano-diamonds (NDs), graphene oxide (GO), or fullerene (C60) matrices, higher mass clusters were generated. In addition to (WO3) n -● clusters, oxygen-rich or -deficient species were found in both LDI and MALDI (with the total number of clusters exceeding one hundred ≈ 137). This is the first time that such matrices have been used for the generation of(WO3) n +●/-● clusters in the gas phase, while new high mass clusters (WO3) n -● (n = 12-19) were also detected.
Graphical Abstract
  相似文献   

11.
In an attempt to find single-source precursors, a series of small clusters of inorganic azides of indium (Br2InN3) n (n = 1–6) were studied using the dispersion correction density functional theory (wB97XD). The obtained (Br2InN3) n (n = 2–6) clusters have the core structures of 2n-membered ring with alternating indium and α-nitrogen atoms. The influences of cluster size (oligomerization degree n) on the structures, energies, IR spectra, and thermodynamic properties of clusters were discussed. The computed binding energies indicate the stability: 3A > 3B, 4B > 4C > 4A > 4D, 5E > 5D > 5B = 5C > 5A and 6I > 6C > 6D > 6G ≥ 6H > 6F > 6E > 6B > 6A. It is also found that (Br2InN3)2 and (Br2InN3)4 clusters possess higher stability than their neighbor sizes judged by the calculated second-order difference of energies (Δ2 E). Meanwhile, thermodynamic properties for (Br2InN3) n (n = 1–6) clusters increase with the increasing temperature and oligomerization degree n, and the oligomerizations are thermodynamically favorable at temperatures up to 800 K.  相似文献   

12.
The lowest energy structures and electronic properties of ErSi n (n = 3–10) and their anions were probed using the ABCluster global search technique combined with the PBE, TPSSh and B3LYP schemes. The lowest energy energies of neutral ErSi n (n = 3–10) can be regarded as substituting a Si atom of the lowest energy structure of Sin+1 with a Er atom. The additional electron effects on the geometries are very strong, resulting the lowest energy structures of ErSi n ? with n > 6 are different from their neutral counterparts. Starting from n = 7, the potential energy surfaces of ErSi n ? are very flat, resulting isomeric arrangements occur and functional dependence of the predicted most stable structures exist. The AEAs, VDEs and simulated PES of ErSi n (n = 3–10) are reported. Introducing Er to Si cluster can significantly improve photochemical reactivity of the cluster. The 4f electron of Er atom in ErSi4, ErSi n ? (n = 4, 7–10) prefers to take part in bonding. The total magnetic moments of ErSi n and their anions are mainly provided by the 4f electrons of Er atom. The dissociation energies of Er from ErSi n and their anions were evaluated to inspect relative stability.  相似文献   

13.
Genetic algorithm combined with the semi-empirical Hamitonian AM1/PM3 is used to search the low energy isomers of Al n Si m (n = 3, 5, m ≤ 3 and n = 4, m ≤ 4) and the charged clusters with 20 and 28 valence electrons. The candidate structures were optimized by the density functional theory PBE0 and B3LYP models with the triply split basis sets including polarization functions. The electronic structures show that Al–Si binary clusters behave like metal clusters. The molecular orbitals accord with that predicted by the jellium model, and the electron localization function shows the valence electrons are delocalized over the entire clusters. The clusters having 20 and 28 valence electrons exhibit pronounced stabilities and large energy gaps. The 20 valence electrons of Al4Si2 and Al3Si3 +, Al5Si? form closed shells 1S 21P 62S 21D 10. Al4Si4 and Al5Si3 ? have oblate structures and the P, D, F levels spilt considerably in these clusters. The electron density distributions suggest that doping silicon in the aluminum clusters enhances the stability considerably.  相似文献   

14.
The pure Znm (m?=?2–10), mixed ZnmOm (m?=?1–10), ZnmO10??m (m?=?1–9) clusters and the univalent and divalent ring-like ZnmOm (m?=?2–10) cluster ions are systematically investigated by using Amsterdam density functional (ADF) program with Triple-zeta with two polarization functions basis set in conjunction with self-consistent field. Our calculated results show that the Zn4 and Zn7 clusters are the magic clusters. The structures of the ZnmOm (m?=?1–10) clusters evolve from two-dimension to three-dimension after m?=?8. For the ZnmO10??m (m?=?1–9) clusters, the Zn-rich structures evolve gradually from three-dimension to plane with an increase in the O ratios. The Zn5O5 cluster with equal ratio has a two dimensional structure. In the O-rich clusters, the O dimers can be easily detached from them. The O and Zn atoms partly adopt sp2 and sp hybridization, respectively, in the ring-like ZnmOm (m?=?2–10) clusters and their ions. Gain and loss charge would affect the degree of hybridization and change their geometries. Their structural changes can be explained by valence bond theory.  相似文献   

15.
The density functional theory (DFT) method has been employed to systematically investigate the geometrical structures, stabilities, IR spectrum and thermodynamic properties of small asymmetric clusters (HClBN3)n (n = 1–6). When n ≥ 2, the optimized results suggest that the (BNα)2n cyclic structures with alternating boron and α-nitrogen atoms are observed in clusters. The influences of cluster size on the structures of clusters were discussed. The second-order difference in energies show that the (HClBN3)3 isomer is the most stable among the asymmetric clusters (HClBN3)n. Four main characteristic regions are obtained and assigned for the calculated IR spectra. A study of their thermodynamic properties suggests that monomer 1 forms clusters (2–6) thermodynamically favorable by the enthalpies at 298.2 K.  相似文献   

16.
Doping transition metal atom is known as an effective approach to stabilize an atomic cluster and modify its structure and electronic properties. We herein report the effect of molybdenum doping on the structural evolution of medium-sized boron clusters. The lowest-energy structures of MoBn (n?=?10, 12, 14, 16, 18, 20, 22, 24) clusters are globally searched using genetic algorithm combined with density functional theory calculations. We found that Mo doping has significantly affected the grow behaviors of Bn clusters, leading to a structural evolution from bowl-like to tubular and finally endohedral cage. The size-dependent binding energy, HOMO–LUMO gap, vertical ionization potential and vertical electron affinity show that MoB12, MoB22 and MoB24 clusters have relatively higher stability and enhanced chemical inertness. More interestingly, the endohedral MoB22 cage is identified as an elegant superatom, which satisfies 18-electron closed shell configuration well.  相似文献   

17.
In the problem of the production silver nanoparticles, mass spectrometry allows one to identify nanoclusters as nuclei or intermediates in the synthesis of nanoparticles and to understand the mechanisms of their formation. Using low-temperature secondary emission mass spectrometry, we determined the cluster composition of a system formed in the microwave treatment of a solution of AgNO3 in ethylene glycol (M). Along with silver ion–ethylene glycol associates М m ? Ag+ (m = 1–5) and small silver clusters AgM n + (n = 1–9), unusual silver clusters with one hydrogen atom [Ag n H]+ (n = 2, 4) were observed. Possible pathways for the formation of silver nanoparticles taking into account hydrogen-containing cluster intermediates are discussed.  相似文献   

18.
The reaction on 8-hydroxy quinoline-7-aldehyde azo compounds (HL n ) (where n = 1–5) with 4-amino-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one to obtain HL n (where n = 6–10) have been characterized by means of TLC, melting point and spectral data, such as IR, 1H NMR, mass spectra and thermal studies. The X-ray diffraction patterns of two starting materials 8-hydroxy quinoline-7-aldehyde (start 1), 4-amino-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one (start 2) and the ligands (HL5,10) are investigated in powder form. All the ligands have been screened for their antimicrobial activity against four local bacterial species, two Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) and two Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae) as well as against four local fungi; Aspergillus niger, Alternaria alternata, Penicillium italicum and Fusarium oxysporium. The results show that the azo ligands (HL n ) (where n = 1–5) have no antimicrobial activity against bacteria and fungi while most azomethine ligands (HL n ) (where n = 6–10) are good antibacterial agents against E. coli and K. pneumoniae as well as antifungal agents against P. italicum and A. alternata. The results were compared to standard substances (start 1) and (start 2). Among the azomethine ligands, HL10 was the most effective against the most microorganisms tested. The size of clear zone was ordered as p-(OCH3 < CH3 < H < Cl < NO2) as expected from Hammett’s constant (σ R ). Also, the ultrastructure study of the affected bacteria confirmed that HL8 is good antibacterial agent against E. coli and S. aureus.  相似文献   

19.
The n-decane–n-hexadecane–cyclododecane, n-decane–cyclododecane, and n-hexadecane–cyclododecane systems are studied by means of low-temperature differential thermal analysis using a differential scanning heat flow calorimeter. It is noted that all studied systems belong to the eutectic type. It is concluded that in the n-decane–n-hexadecane–cyclododecane system, the eutectic composition contains 85.0 wt % n10Н22, 4.0 wt % n16Н34, and 11.0 wt % С12Н24. It has a melting point of ?35.0°C.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号