首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Poly d(A:T) parallel-stranded DNA duplexes based on the Hoogsteen and reverse Watson-Crick hydrogen bond pairing are studied by means of extensive molecular dynamics (MD) simulations and molecular mechanics coupled to Poisson-Boltzmann (MM-PB/SA) calculations. The structural, flexibility, and reactivity characteristics of Hoogsteen and reverse Watson-Crick parallel duplexes are described from the analysis of the trajectories. Theoretical calculations show that the two parallel duplexes are less stable than the antiparallel Watson-Crick duplex. The difference in stability between antiparallel and parallel duplexes increases steadily as the length of the duplex increases. The reverse Watson-Crick arrangement is slightly more stable than the Hoogsteen duplex, the difference being also increased linearly with the length of the duplex. A subtle balance of intramolecular and solvation terms is responsible for the preference of a given helical structure.  相似文献   

2.
Binding of an acetic acid (HAc) ligand to adenosine (A) was studied by (1)H NMR spectroscopic techniques. Using a low-melting deuterated Freon mixture as solvent, liquid-state measurements could be performed in the slow exchange regime and allowed a detailed characterization of the formed associates. Thus, at 128 K, trimolecular complexes A.HAc(2) and A(2).HAc with both Watson-Crick and Hoogsteen sites of the central adenine base occupied coexist in various amounts depending on the adenosine:acetic acid molar ratio. Whereas the carboxylic acid OH proton is located closer to the acid for all hydrogen bonds formed, a more deshielded proton at the Watson-Crick site is evidence for a stronger hydrogen bond as compared to the Hoogsteen interaction. For the binding of acetic acid to an adenosine-thymidine base pair in either a Watson-Crick or a Hoogsteen configuration, hydrogen bonds to the available adenine binding site are strengthened as compared to the corresponding hydrogen bonds in the A.HAc(2) complex.  相似文献   

3.
The structure of a new form of duplex DNA, the antiparallel Hoogsteen duplex, is studied in polyd(AT) sequences by means of state-of-the-art molecular dynamics simulations in aqueous solution. The structure, which was found to be stable in all of the simulations, has many similarities with the standard Watson-Crick duplex in terms of general structure, flexibility, and molecular recognition patterns. Accurate MM-PB/SA (and MM-GB/SA) analysis shows that the new structure has an effective energy similar to that of the B-type duplex, while it is slightly disfavored by intramolecular entropic considerations. Overall, MD simulations strongly suggest that the antiparallel Hoogsteen duplex is an accessible structure for a polyd(AT) sequence, which might compete under proper experimental conditions with normal B-DNA. MD simulations also suggest that chimeras containing Watson-Crick duplex and Hoogsteen antiparallel helices might coexist in a common structure, but with the differential characteristics of both type of structures preserved.  相似文献   

4.
The cocrystals of adenine and metal (II) quinoline-2-carboxylates (M = Mn2+, Fe2+, Co2+) have been obtained by self-assembly. The complexes are composed of adenine ribbons with the AA22 pairing pattern involving both Watson-Crick and Hoogsteen faces in hydrogen bonding and the neutral molecules of carboxylate positioned in inorganic layers. The very compact supramolecular structure is made by the extensive system of hydrogen bonds and face-to-face pi-pi interactions.  相似文献   

5.
《Chemistry & biology》1996,3(1):57-65
zIntroduction: Based on molecular modeling studies, a model has been proposed for intercalation of triple-helixspecific ligands (benzopyridoindole (BPI) derivatives) into triple helices, in which the intercalating compounds interact mainly with the Hoogsteen-paired strands of the triple helix. We set out to test this model experimentally using DNA duplexes capable of forming parallel Hoogsteen base-paired structures.Results: We have investigated the possible formation of a parallel DNA structure involving Hoogsteen hydrogen bonds by thermal denaturation, FTIR spectroscopy and gel-shift experiments. We show that BPI derivatives bind to Hoogsteen base-paired duplexes and stabilize them. The compounds induce a reorganization from a non-perfectly matched antiparallel Watson-Crick duplex into a perfectly matched parallel Hoogsteen-paired duplex.Conclusions: These results suggest that preferential intercalation of BPI derivatives in triple helices is due to their ability to interact specifically with the Hoogsteen-paired bases. The results are consistent with a model proposed on the basis of molecular modeling studies using energy minimization, and they open a new field of investigations regarding the biological relevance of Hoogsteen base-pairing.  相似文献   

6.
The X-ray structure of a partly self-complementary peptide nucleic acid (PNA) decamer (H-GTAGATCACT-l-Lys-NH(2)) to 2.60 A resolution is reported. The structure is mainly controlled by the canonical Watson-Crick base pairs formed by the self-complementary stretch of four bases in the middle of the decamer (G(4)A(5)T(6)C(7)). One right- and one left-handed Watson-Crick duplex are formed. The two PNA units C(9)T(10) change helical handedness, so that each PNA strand contains both a right- and a left-handed section. The changed handedness in C(9)T(10) allows formation of Hoogsteen hydrogen bonding between C(9)T(10) and G(4)A(5) of a PNA strand in an adjacent Watson-Crick double helix of the same handedness. Thereby, a PNA-PNA-PNA triplex is formed. The PNA unit A(3) forms a noncanonical base pair with A(8) in a symmetry-related strand of opposite handedness; the base pair is of the A-A reverse Hoogsteen type. The structural diversity of this PNA demonstrates how the PNA backbone is able to adapt to structures governed by the stacking and hydrogen-bonding interactions between the nucleobases. The crystal structure further shows how PNA oligomers containing limited sequence complementarity may form complex hydrogen-bonding networks.  相似文献   

7.
Results obtained using 2,4-difluorotoluene nucleobase (dF) as a nonpolar thymine isostere by Kool and colleagues challenged the Watson-Crick dogma that hydrogen bonds between complementary bases are an absolute requirement for accurate DNA replication. Here, we report crystal structure of an RB69 DNA polymerase L561A/S565G/Y567A triple mutant ternary complex with a templating dF opposite dTTP at 1.8 ?-resolution. In this structure, direct hydrogen bonds were observed between: (i) dF and the incoming dTTP, (ii) dF and residue G568 of the polymerase, and (iii) dF and ordered water molecules surrounding the nascent base pair. Therefore, this structure provides evidence that a templating dF can form novel hydrogen bonds with the incoming dTTP and with the enzyme that differ from those formed with a templating dT.  相似文献   

8.
花尔并  杨频 《结构化学》1996,15(6):462-465
通过圆二色谱(CD)和吸收光谱研究了Cu(2+)对三螺旋poly(A:2I)的解旋行为,并从结构的角度分析了其解旋机理。结果表明:Cu(2+)通过与poly(A:2I)中的碱基的结合,破坏了Hoogsteen碱基对和Watson-Crick碱基对中的氢键,从而导致了三螺旋poly(A:2I)不可复性的解旋。  相似文献   

9.
We found that Hoogsteen base pairs were stabilized by molecular crowding and a histone H3-mimicking peptide, which was not observed for Watson-Crick base pairs. Our findings demonstrate that the type of DNA base pair is critical for the interaction between DNA and histones.  相似文献   

10.
NMR experiments and theoretical investigations were performed on hydrogen bonded complexes of specifically 1- and 7-15N-labeled adenine nucleosides with carboxylic acids. By employing a freonic solvent of CDClF2 and CDF3, NMR spectra were acquired at temperatures as low as 123 K, where the regime of slow hydrogen bond exchange is reached and several higher-order complexes were found to coexist in solution. Unlike acetic acid, chloroacetic acid forms Watson-Crick complexes with the proton largely displaced from oxygen to the nitrogen acceptor in an ion pairing structure. Calculated geometries and chemical shifts of the proton in the hydrogen bridge favorably agree with experimentally determined values if vibrational averaging and solvent effects are taken into account. The results indicate that binding a second acidic ligand at the adenine Hoogsteen site in a ternary complex weakens the hydrogen bond to the Watson-Crick bound carboxylic acid. However, substituting a second adenine nucleobase for a carboxylic acid in the trimolecular complex leads to cooperative binding at Watson-Crick and Hoogsteen faces of adenosine.  相似文献   

11.
12.
Abstract

The Watson-Crick model for DNA has been modified to account for observed physical phenomena associated with DNA. The viscosity data obtained on both partially denatured DNA and on undenatured DNA in various aqueous salt solutions give rise to acidic-type cationic sequences. These results can only be explained if there exist additional bonds other than the hydrogen bonds between base pairs. Considering the experimental data, the only possible type of bond that could exist is an ionic bond between the negatively charged phosphate group and the polar or positively charged nitrogen atom attached to the C'-1 position of the deoxyribose unit. The formation of such an ionic bond produces a natural twist in the DNA strand. The model is also applicable to RNA, although steric factors affect the stability and structure of such an RNA. Values of ΔH for the formation of the DNA and RNA double helix substantiate the proposed models. The most plausible structure for the double-stranded DNA helix is a model where the base pairs are on the surface rather than on the interior of the helix. Hydrophobic bonds do not exist except possibly in the altered structure produced during preparation of the DNA for X-ray analyses. The viscosity results on undenatured DNA in various salt solutions are caused by two factors: a destruction of the ionic bond and a reversal of charge effect on the DNA. The results show that the charge on DNA must change from a negative to a positive charge with addition of salt. The proposed model is applied to replication of DNA and formation of RNA from DNA and associated phenomena.  相似文献   

13.
In this work we report a thermodynamic characterization of stability and melting behaviour of two 24-mer DNA triplexes. The third strand, that binds the Watson-Crick double helix with Hoogsteen hydrogen bonds, contains 3′-3′ phosphodiester junction that determines the polarity inversion. The target double helix is composed of adjacent and alternate fragments of oligopurine-oligopyrimidine tracts. The two helices differ from the substitution of the cytosine, involved in the junction, with the thymine. Calorimetric data reported here provide a quantitative measure of the influence of pH and base modification on the stability of a DNA triplex. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The fractionation factor is defined as the equilibrium constant for the reaction: R – H + DOH R – D + HOH. Of interest are values of fractionation factors for reactions where reactants and/or products form intramolecular low-barrier hydrogen bonds. Experimentally measured isotopic fractionation factors are usually interpreted via a one-dimensional potential energy surface along the intrinsic proton hydrogen bond coordinate. Such a one-dimensional picture cannot be completely correct. Intramolecular motions, such as vibrations and librations, can modulate the underlying potential energy surface along the hydrogen bond coordinate and thus affect the isotopic fractionation factor. We have recently generated a picture of the motion of the proton in a low-barrier hydrogen bond as taking place in an effective single-dimensional potential, which we term the potential of mean force (PMF). In this paper, we compute the PMF for a molecule with an intramolecular hydrogen bond in order to quantify the effect of intramolecular motions on the fractionation factor. The PMF and isotopic fractionation factor are computed with a combination of high-level density functional theory and molecular dynamics simulations.  相似文献   

15.
16.
Nucleic acids transiently morph into alternative conformations that can be difficult to characterize at the atomic level by conventional methods because they exist for too little time and in too little abundance. We recently reported evidence for transient Hoogsteen (HG) base pairs in canonical B-DNA based on NMR carbon relaxation dispersion. While the carbon chemical shifts measured for the transient state were consistent with a syn orientation for the purine base, as expected for A(syn)?T(anti) and G(syn)?C(+)(anti) HG base pairing, HG type hydrogen bonding could only be inferred indirectly. Here, we develop two independent approaches for directly probing transient changes in N-H···N hydrogen bonds and apply them to the characterization of transient Hoogsteen type hydrogen bonds in canonical duplex DNA. The first approach takes advantage of the strong dependence of the imino nitrogen chemical shift on hydrogen bonding and involves measurement of R(1ρ) relaxation dispersion for the hydrogen-bond donor imino nitrogens in G and T residues. In the second approach, we assess the consequence of substituting the hydrogen-bond acceptor nitrogen (N7) with a carbon (C7H7) on both carbon and nitrogen relaxation dispersion data. Together, these data allow us to obtain direct evidence for transient Hoogsteen base pairs that are stabilized by N-H···N type hydrogen bonds in canonical duplex DNA. The methods introduced here greatly expand the utility of NMR in the structural characterization of transient states in nucleic acids.  相似文献   

17.
A strategy to create cooperative hydrogen‐bonding centers by using strong and directional intramolecular hydrogen‐bonding motifs that can survive in aqueous media is presented. In particular, glyco–oligoamides, a family of DNA minor groove binders, with cooperative and non‐cooperative hydrogen‐bonding donor centers in the carbohydrate residues have been designed, synthesized, and studied by means of NMR spectroscopy and molecular modeling methods. Indeed, two different sugar moieties, namely, β‐D ‐Man‐Py‐γ‐Py‐Ind ( 1 ; Ind=indole, Man=mannose, Py=pyrrole) and β‐D ‐Tal‐Py‐γ‐Py‐Ind ( 2 ; Tal=talose), were chosen according to our design. These sugar molecules should present one‐ or two‐directional intramolecular hydrogen bonds. The challenge has been to study the conformation of the glyco–oligoamides at low temperature in physiological media by detecting the exchangeable protons (amide NH and OH resonances) by means of NMR spectroscopic analysis. In addition, two more glyco–oligoamides with non‐cooperative hydrogen‐bonding centers, that is, β‐D ‐Glc‐Py‐γ‐Py‐Ind ( 3 ; Glc=glucose), β‐D ‐Gal‐Py‐γ‐Py‐Ind ( 4 ; Gal=galactose), and the model compounds β‐D ‐Man‐Py‐NHAc ( 5 ) and β‐D ‐Tal‐Py‐NHAc ( 6 ) were synthesized and studied for comparison. We have demonstrated the existence of directional intramolecular hydrogen bonds in 1 and 2 in aqueous media. The unexpected differences in terms of stabilization of the intramolecular hydrogen bonds in 1 and 2 relative to 5 and 6 promoted us to evaluate the influence of CH—π interactions on the establishment of intramolecular hydrogen bonds by using computational methods. Initial binding studies of 1 and 2 with calf‐thymus DNA and poly(dA‐dT)2 by NMR spectroscopic analysis and molecular dynamics simulations were also carried out. Both new sugar–oligoamides are bound in the minor groove of DNA, thus keeping a stable hairpin structure, as in the free state, in which both intramolecular hydrogen‐bonding and CH—π interactions are present.  相似文献   

18.
The crystal structure of [d(CGCAAATTTGCG)]2 has been determined to 1.5 A resolution, representing the first high-resolution structure of this DNA fragment. The ion interactions are novel. A spermine molecule replaces a Mg2+ observed in analogous structures. Unlike lower-resolution structures, the minor groove is narrow and the major groove lacks extra Watson-Crick hydrogen bonds. In addition, a monolayer of solvent sites, including a "spine of hydration", is visible in the minor groove. The crystal of [d(CGCAAATTTGCG)]2 was grown from a solution containing spermine, magnesium, and lithium. The conformation recapitulates that of "monovalent-minus" DNA.  相似文献   

19.
Gaps in the central strand of oligonucleotide triplexes bind nucleoside phosphates tightly. Watson-Crick and Hoogsteen base pairing as design principle yield motifs with high affinity for nucleoside phosphates with A or G as nucleobase, including ATP. The second messenger 3',5'-cAMP is bound with nanomolar affinity. A designed DNA motif accommodates seven nucleotides at a time. The design was implemented for both DNA and RNA.  相似文献   

20.
An empirically based relationship between overall complex stability (-DeltaG degrees ) and various possible component interactions is developed to probe the question of whether the A.T/U and G.C base-pairs exhibit enhanced stability relative to similarly hydrogen-bonded complexes. This phenomenological approach suggests ca. 2-2.5 kcal mol-1 in additional stability for A.T owing to a group interaction containing a CH...O contact. Pairing geometry and the role of the CH...O interaction in the A.T base-pair were also probed using MP2/6-31+G(d,p) calculations and a double mutant cycle. The ab initio studies indicated that Hoogsteen geometry is preferred over Watson-Crick geometry in A.T by ca. 1 kcal mol-1. Factors that might contribute to the preference for Hoogsteen geometry are a shorter CH...O contact, a favorable alignment of dipoles, and greater distances between secondary repulsive sites. The CH...O interaction was also investigated in model complexes of adenine with ketene and isocyanic acid. The ab initio calculations support the result of the phenomenological approach that the A.T base-pair does have enhanced stability relative to hydrogen-bonded complexes with just N-H...N and N-H...O hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号