首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solubilities of beta-cyclodextrin (beta-CD), ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6), and their mixture in water were determined, and the conductivity of these aqueous solutions was measured. It was demonstrated that beta-CD and bmimPF6 could enhance the solubility of each other, and the solubility curves of each were linear with gradients of about 1. The conductivity decreased remarkably with increasing beta-CD concentration, and a discernible break in the conductivity curve could be observed when beta-CD and bmimPF6 were equimolar in the solution. The solubility and conductivity results indicated that inclusion complexes (ICs) of 1:1 stoichiometry were formed. The inclusion compounds were further characterized by using powder X-ray diffraction (XRD) analysis, 13C CP/MAS (cross-polarization magic-angle spinning) NMR and 1H NMR spectroscopy, and thermogravimetric analysis (TGA). The results showed that the ICs were a fine crystalline powder. The host-guest system exhibited a channel-type structure and each glucose unit of beta-CD was in a similar environment. The decomposition temperature of the ICs was lower than that of bmimPF6 and beta-CD individually.  相似文献   

2.
3.
Inclusion compounds of cationic, anionic, and neutral p-substituted derivatives of tert-butylbenzene complexed in beta-cyclodextrin and its ionic 6-mono and 6-hepta derivatives were systematically investigated by isothermal titration calorimetry (ITC). All inclusion compounds showed 1:1 stoichiometry with binding constants ranging from 10 to 3 x 10(6) M(-1). The binding free energies could be subdivided into apolar and electrostatic contributions. The electrostatic interactions could be quantitatively described by Coulomb's law by taking into account the degree of protonation of hosts and guests, the orientations of the guests within the hosts, and ion shielding as described by the Debye-Hückel-Onsager theory. The orientations of the guests within the cyclodextrin cavities were determined by ROESY NMR spectroscopy.  相似文献   

4.
5.
6.
Poly(isobutene-alt-maleic acid)s modified with p-tert-butylphenyl or adamantyl groups interact with beta-cyclodextrin self-assembled monolayers (beta-CD SAMs) by inclusion of the hydrophobic substituents in the beta-cyclodextrin cavities. The adsorption was shown to be strong, specific, and irreversible. Even with a monovalent competitor in solution, adsorption to the beta-CD SAMs was observed, and desorption proved impossible. The adsorbed polymer layer was very thin as evidenced by surface plasmon resonance spectroscopy and AFM. Apparently, all or most hydrophobic groups of the polymers were employed efficiently in multivalent binding, as was further supported by the absence of specific binding of beta-CD-modified gold nanoparticles to the polymer surface assemblies. Supramolecular microcontact printing of the polymers onto the beta-CD SAMs led to assembly formation in the targeted areas of the substrates.  相似文献   

7.
Solvent inclusion/evacuation caused variations in the structural and magnetic characteristics of the purely organic porous magnet based on the tricarboxylic-substituted PTMTC radical. Whereas no inclusion is observed for nonpolar solvents, the exposure of crystals of the alpha-phase of PTMTC to vapors of polar organic solvents with hydrogen acceptor and/or donor functionalities, such as, ethanol, benzoic alcohol, n-decanol, THF, and DMSO results in the inclusion of these solvents in the highly polar tubular channels of the alpha-phase. The resulting inclusion compounds of formula PTMTC.x(guest) show several structural rearrangements, as confirmed by IR and XRPD (X-ray powder diffraction) measurements. The crystal transformations have been studied for a specific case: the PTMTC.EtOH adduct. The crystal structure reveals that included guest solvent molecules participate in the formation of new hydrogen bonds with the carboxylic groups of PTMTC radicals, inducing the disruption of several direct hydrogen bonds among these radicals. As expected, the interruption of direct hydrogen bonds between PTMTC radicals induces large transformations in the magnetic properties. From the ferromagnetic behavior of the alpha-phase, predominant antiferromagnetic interactions are observed for the inclusion adducts. Interestingly, both structural and magnetic changes are reversible after removal of guest solvent molecules.  相似文献   

8.
Triazinyl-N-oxy free radicals, 2-methyl-2,4,6-triphenyl-1,2-dihydro-1,3,5-triazinyl-1-oxy (6a), 2,2,4,6-tetraphenyl-1,2-dihydro-1,3,5-triazinyl-1-oxy (6b), 2,2-dimethyl-4,6-diphenyl-1,2-dihydro-1,3,5-triazinyl-1-oxy (13), and 2,6-dimethyl-2,4-diphenyl-1,2-dihydro-1,3,5-triazinyl-1-oxy (14), in which the unpaired electron is delocalized over three nitrogen atoms, have been prepared and characterized. A method has been devised for introducing an N-oxide function into the triazinyl core. Then, by using a Grignard reagent, substitution α to the N-oxide group was achieved and the resulting 1,2-dihydrotriazine-N-oxide oxidized into the corresponding nitroxide. Solution EPR spectra exhibit hyperfine splitting that confirms spin delocalization over the three nitrogen atoms of the triazinyl ring. They also show that spin delocalization diminishes with increasing distance for the coupling and is largest for nitrogen N1 and weakest for N5. Free radicals 6a and 13 are stable in the solid state and have been characterized by X-ray diffraction, but they tend to gradually degrade in solution. In the solid state, these two free radicals are arranged into antiferromagnetically exchange-coupled pairs, J=-5.2(6) for 6a and -3.7(4) cm(-1) for 13 (H=-2JS(1)S(2)).  相似文献   

9.
EPR spectroscopy was used for the first time to explore the binding properties of cucurbit[7]uril (CB7), a representative member of the cucurbituril family. Evidence for the formation of a complex between nitroxide radicals and the host system in an aqueous solution was provided by large changes in the nitrogen hyperfine splitting, attributed to the different polar environments experienced by the included radical. In the presence of alkali cations, the EPR spectra of benzyl tert-butyl nitroxide were characterised by new signals attributed to the radical hosted in the CB7 cavity in which one metal cation is in close contact with the nitroxidic oxygen. The formation of the coordination complex results in a substantial increase in the electron spin density on the nitrogen in inverse order with respect to the size of the cation owing to increased localisation of negative charge on the oxygen atom from bonding to the alkali cation. The EPR spectra showed selective line-broadening effects as a result of metal exchange between bulk water and the coordination complex. Analysis of the EPR linewidth variations allowed us to measure the corresponding kinetic rate constants for the first time. NMR spectroscopy showed that this behaviour is not peculiar to nitroxides but is also exhibited by the related carbonyl compounds. These data allowed us to quantify the template effect and to reach the conclusion that, in the presence of a guest having a coordinating lone pair, the formation of ternary metal-guest-CB complexes must be taken into account when discussing the complexation behaviour of cucurbituril derivatives in the presence of salts.  相似文献   

10.
11.
12.
Electrospray ionization (ESI) mass spectra have been recorded for a range of substituted nitronyl nitroxide and iminyl nitroxide monoradicals and biradicals. Secondary species formed in the ESI source were observed as the dominant ions in both the iminyl nitroxide and nitronyl nitroxide spectra. Daughter ion spectrometry was used to establish fragmentation mechanisms for the nitronyl nitroxide and iminyl nitroxide moieties as well as the secondary species under ESI conditions.  相似文献   

13.
The dynamics in the host-guest complexes of the molecular tweezers 1 a,b and clips 2 a,b with 1,2,4,5-tetracyanobenzene (TCNB, 3) and tropylium tetrafluoroborate (4) as guest molecules were analyzed by temperature-dependent 1H NMR spectroscopy. The TCNB complexes of tweezers 1 a,b were found to be particularly stable (dissociation barrier: DeltaG(++)=16.8 and 15.7 kcal mol(-1), respectively), more stable than the TCNB complexes of clips 2 a,b and the tropylium complex of tweezer 1 b (dissociation barrier: DeltaG(++)=12.4, 11.2, and 12.3 kcal mol(-1), respectively). A detailed analysis of the kinetic and thermodynamic data (especially the negative entropies of activation found for complex dissociation) suggests that in the transition state of dissociation the guest molecule is still clipped between the aromatic tips of the host molecule. The 1H NMR analysis of the TCNB complexes 3@1 b and 3@2 a at low temperatures (T<-80 degrees C) showed that 3 undergoes fast rotation inside the cavity of tweezer 1 b or clip 2 a (rotational barrier: DeltaG( not equal)=11.7 and 8.3 kcal mol(-1), respectively). This rotation of a guest molecule inside the host cavity can be considered to be the dynamic equilibration of noncovalent conformers. In the case of clip complex 3@2 a the association and rotational barriers are smaller by DeltaDeltaG(++)=3-4 kcal mol(-1) than those in tweezer complexes 3@1 a,b. This can be explained by the more open topology of the trimethylene-bridged clips compared to the tetramethylene-bridged tweezers. Finally, the bromo substituents in the newly prepared clip 2 b have a substantial effect on the kinetics and thermodynamics of complex formation. Clip 2 b forms weaker complexes with (TCNB, 3) and tetracyanoquinodimethane (TCNQ, 12) and a more stable complex with 2,4,7-trinitrofluoren-9-ylidene (TNF, 13) than the parent clip 2 a. These results can be explained by a less negative electrostatic potential surface (EPS) inside the cavity and a larger van der Waals contact surface of 2 b compared to 2 a. In the case of the highly electron-deficient guest molecules TCNB and TCNQ the attractive electrostatic interaction is predominant and hence responsible for the thermodynamic complex stability, whereas in the case of TNF with its extended pi system, dispersion forces are more important for host-guest binding.  相似文献   

14.
Two new crystalline resorcinarene-based xanthone inclusion complexes, CECRxanthoneMeOH (1), and HECR2 xanthone6 MeOH (2) (CECR = C-ethylcalix[4]resorcinarene, HECR = hexaethylresorcin[6]arene) have been prepared to study the relation between photophysical properties and solid-state structure. Compared with the neat crystals, the xanthone phosphorescence is severely quenched in both solids, but the lifetime is an order of magnitude larger in 2, in which xanthone occurs as a dimer, than in 1, in which it occurs as a monomer. The electronic transitions involved in the photoluminescent process, and the relation between the energy levels of host and guest and emission quenching of the guest in the supramolecular solid have been investigated by means of time-dependent density functional theory (TDDFT) calculations.  相似文献   

15.
Nitroxide free radicals have been used to study the inner space of one of Rebek’s water‐soluble capsules. EPR and 1H NMR spectroscopy, ESI‐MS, and DFT calculations showed a preference for the formation of 1:2 complexes. EPR titrations allowed us to determine binding constants (Ka) in the order of 107 M ?2. EPR spectral‐shape analysis provided information on the guest rotational dynamics within the capsule. The interplay between optimum hydrogen bonding upon capsule formation and steric strain for guest accommodation highlights some degree of flexibility for guest inclusion, particularly at the center of the capsule where the hydrogen bond seam can be barely distorted or slightly disturbed.  相似文献   

16.
17.
18.
A competitive photoresponsive supramolecular system is formed in a dilute aqueous solution of three components: vesicles of amphiphilic α-cyclodextrin host 1a, divalent p-methylphenyl guest 2 or divalent p-methylbenzamide guest 3, and photoresponsive azobenzene monovalent guest 5. Guests 2 and 3 form weak inclusion complexes with 1a (K(a)≈10(2) M(-1)), whereas azobenzene guest 5 forms a strong inclusion complex (K(a)≈10(4) M(-1)), provided it is in the trans state. The aggregation and adhesion of vesicles of host 1a is mediated by guest 2 (or 3) due to the formation of multiple intervesicular noncovalent links, as confirmed by using isothermal titration calorimetry (ITC), optical density measurements at 600 nm (OD600), dynamic light scattering (DLS), and cryogenic transmission electron microscopy (cryo-TEM). The addition of excess monovalent guest trans-5 to vesicles of 1a aggregated by divalent guest 2 (or 3) causes the dispersion of vesicles of 1a because trans-5 displaces 2 (as well as 3) from the vesicle surface. Upon UV irradiation of a dilute ternary mixture of vesicles of 1a, guest 2 (or 3), and competitor trans-5, compound trans-5 isomerizes to cis-5, and renewed aggregation of vesicles of 1a by guest 2 (or 3) occurs because 2 (as well as 3) displaces cis-5 from the vesicle surface. Subsequent visible irradiation causes the redispersion of vesicles of 1a because cis-5 reisomerizes into trans-5, which again displaces guest 2 (or 3) from the vesicle surface. In this way, the competitive photoresponsive aggregation and dispersion of vesicles can be repeated for several cycles.  相似文献   

19.
We describe herein a detailed study of the inclusion processes of several positively charged organometallic sandwich complexes inside the aromatic cavity of the self-folding octaamide cavitand 1. In all cases, the binding process produces aggregates with a simple 1:1 stoichiometry. The resulting inclusion complexes are not only thermodynamically stable, but also kinetically stable on the (1)H NMR spectroscopy timescale. The binding constants for the inclusion complexes were determined by different titration techniques. We have also investigated the kinetics of the binding process and the motion of the metallocenes included in the aromatic cavity of the host. Using DFT-based calculations, we have evaluated the energies of a diverse range of potential binding geometries for the complexes. We then computed the proton chemical shifts of the included guest in each one of the binding geometries. The agreement between the averaged computed values and the experimentally determined chemical shifts clearly supports the proposed binding geometries that we assigned to the inclusion complexes formed in solution. The combination of experimental and theoretical results has allowed us to elucidate the origins of the distinct features detected in the complexation process of the different guests, as well as their different motions inside the host.  相似文献   

20.
The T-shaped host molecule 4,4-bis(4'-hydroxyphenyl)cyclohexanone (1) has an equatorial phenol group and a cyclohexanone group along the arms and an axial phenol ring as the stem. The equatorial phenyl ring adopts a "shut" or "open" conformation, like a windowpane, depending on the size of the guest (phenol or o/m-cresol), for the rectangular voids of the hydrogen-bonded ladder host framework. The adaptable cavity of host 1 expands to 11x15-18 A through the inclusion of water with the larger cresol and halophenol guests (o-cresol, m-cresol, o-chlorophenol, and m-bromophenol) compared with a size of 10x13 A for phenol and aniline inclusion. The ladder host framework of 1 is chiral (P2(1)) with phenol, whereas the inclusion of isosteric o- and m-fluorophenol results in a novel polar brick-wall assembly (7x11 A voids) as a result of auxiliary C-H...F interactions. The conformational flexibility of strong O-H...O hydrogen-bonding groups (host 1, phenol guest), the role of guest size (phenol versus cresol), and weak but specific intermolecular interactions (herringbone T-motif, C-H...F interactions) drive the crystallization of T-host 1 towards 1D ladder and 2D brick-wall structures, that is, supramolecular isomerism. Host 1 exhibits selectivity for the inclusion of aniline in preference to phenol as confirmed by X-ray diffraction, 1H NMR spectroscopy, and thermogravimetry-infrared (TG-IR) analysis. The T(onset) value (140 degrees C) of aniline in the TGA is higher than those of phenol and the higher-boiling cresol guests (T(onset)=90-110 degrees C) because the former structure has more O-H...N/N-H...O hydrogen bonds than the clathrate of 1 with phenol which has O-H...O hydrogen bonds. Guest-binding selectivity for same-sized phenol/aniline molecules as a result of differences in hydrogen-bonding motifs is a notable property of host 1. Host-guest clathrates of 1 provide an example of spontaneous chirality evolution during crystallization and a two-in-one host-guest crystal (phenol and aniline), and show how weak C-H...F interactions (o- and m-fluorophenol) can change the molecular arrangement in strongly hydrogen-bonded crystal structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号