首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnitude of the Stokes shift (frequency shifts in absorption and fluorescence spectra) is observed on changing the solvents and further has been used to calculate experimentally the dipole moments (ground state and excited state) of acriflavine and acridine orange dye molecules. Theoretically, dipole moments are calculated using PM 3 Model. The dipole moments of excited states, for both molecules investigated here, are higher than the corresponding values in the ground states. The increase in the dipole moment has been explained in terms of the nature of the excited state. Acriflavine dye overcomes the non-lasing behaviour of acridine orange due to quaternization of the central nitrogen atom.  相似文献   

2.
Absorption and fluorescence emission of 4 and 7 substituted coumarins viz. C 440, C 490, C 485 and C 311 have been studied in various polar and non-polar organic solvents. These coumarin dyes are substituted with alkyl, amine and fluorine groups at 4- and 7-positions. They give different absorption and emission spectra in different solvents. The study leads to a possible assignment of energy level scheme for such coumarins including the effect on ground state and excited state dipole moments due to substitutions. Excited state dipole moments of these dyes are calculated by solvetochromic data experimentally and theoretically these are calculated by PM 3 method. The dipole moments in excited state, for all molecules investigated here, are higher than the corresponding values in the ground state. The increase in dipole moment has been explained in terms of the nature of excited state and resonance structure.  相似文献   

3.
A new method is proposed to estimate the polarizability (αe) of a molecule in an excited state using solvatochromic shift measurements and McRae's equation. In the earlier methods the contribution due to polarizability was not considered. In view of this, the proposed method is also expected to give a better estimation of excited state electric dipole moment (μe) and the (θ) angle between excited and ground state electric dipole moments, μe and μg apart from giving values of polarizability of the molecules in the excited state. This method has been applied in the case of the La band of p-nitro aniline and the results for all the parameters are found to be satisfactory and of right order in comparison with that reported in literature.  相似文献   

4.
The absorption and fluorescence spectra of N-nonyl acridine orange are determined at room temperature (298 K) in cyclohexane, benzene, carbon tetrachloride, chloroform, chlorobenzene and dichloromethane. The ground state of dipole moment was obtained by impedance measurements using Guggenheim-Debeye's method. The experimental excited state dipole moment of N-nonyl acridine orange was determined using Bakhshiev's and Kawski-Chamma-Viallet's formulae and solvent polarity parameter proposed by Reichardt. These experimental results were completed with theoretical results using quantum chemical methods. The experimental (muexp=10.76 D) and theoretical (mucal=9.9 D) dipole moments in the ground and excited state (muexp*=14.56 D) were compared.  相似文献   

5.
Absorption and fluorescence emission spectra of coumarins 6 and 7 were recorded in solvents with different solvent parameters, viz., dielectric constant epsilon and refractive index n. The fluorescence lifetime of these dyes were measured in butanol at higher values of viscosity over temperature. Experimental ground and excited state dipole moments are determined by means of solvatochromic shift method and also the excited state dipole moments are determined in combination with ground state dipole moments. It was determined that dipole moments of the excited state were higher than those of the ground state in both the molecules.  相似文献   

6.
The electronic absorption spectra of eight substituted acetic acids have been measured at room temperature in several solvents. The ground state dipole moments are evaluated experimentally for these molecules. These ground state values are used in conjunction with the spectral results to evaluate their first electronically excited state dipole moments. For all the molecules investigated here the dipole moments in the excited state are higher than their ground state values.  相似文献   

7.
The ground state (mu(g)) and excited state (mu(e)) dipole moments of 15 hemicyanine dyes were studied at room temperature. They were estimated from solvatochromic shifts of the absorption and the fluorescence spectra as function of the solvent dielectric constant (varepsilon) and refractive index (n). In this paper we applied the Stokes shift phenomena not only for the determination of the difference in the dipole moment of excited state and ground state, but to determine the value of polarizability alpha as well. The obtained results show that excited state dipole moments of hemicyanine dyes are in the range from 5 to 15 Debye, and the difference between the excited and ground state dipole moments vary from 1 to 7 Debye. The excited and ground state dipole moments difference (mu(e)-mu(g)) obtained for selected dyes are positive. It means that the excited states of the dyes under the study are more polar than the ground state ones. Additionally, the value of both polarizability (alpha) and the Onsager radius (a) of each investigated hemicyanine dye molecule are determined, and the ratio of alpha/a(3) for each dye were calculated, which oscillate from 0.29 to 5.21. The increase in dipole moment has been explained in terms of the nature of excited state and its resonance structure.  相似文献   

8.
The permanent dipole moments of excited molecules can be obtained from the ratio of the solvent shifts of absorption and fluorescence spectra. This ratio method eliminates the uncertain solute cavity radius parameter, as well as the solvent polarity function. In the case of the first excited singlet state of aniline the dipole moment is 5 D (versus 1.57 D in the ground state).  相似文献   

9.
High-resolution Stark effect measurements on the S1 <-- S0 (pi pi*) origin of magnesium chlorin (MgCh) and zinc chlorin (ZnCh) in single crystals of n-octane at 4.2 K are reported. The corresponding change in dipole moment (absolute value(delta mu(ge))) associated with each transition was estimated to be 0.23 +/- 0.04 and 0.27 +/- 0.05 debye, respectively. Each molecule's orientation in the n-octane crystal was also determined. The change in dipole moment of MgCh was also found using solvatochromic shift data (absolute value(delta mu(ge))) = 0.33 +/- 0.08 debye). The ground state dipole moment (mu(g)) of MgCh was determined by dielectric constant measurement of MgCh/benzene solutions (mu(g) = 2.26 +/- 0.08 debye). These were combined to calculate the average excited state dipole moment of MgCh (mu(e) = 2.51 +/- 0.08 debye). The ground state dipole moment of ZnCh was also determined using solvatochromic shift data (mu(g) = 3.17 +/- 0.08 debye). This was combined with its measured absolute value(delta mu(ge)) to calculate the excited state dipole moment of ZnCh (mu(e) = 3.44 +/- 0.08 debye); the S1 <-- S0 (pi pi*) origin band of both complexes was red-shifted at room temperature as the polarity of the solvents was increased, which implies that delta mu(ge) is positive.  相似文献   

10.
Electro-optical absorption spectra are measured for a series of polyenes, polyynes and cumulenes with centrosymmetric π-chromophores in cyclohexane solution at 298 K. For all molecules the long-axis component of the polarizability tensor is considerably larger in the first dipole-allowed singlet state compared to the ground state. The transition moments are found to be parallel to the long molecular axis. All polyenes and one cumulene show a linear Stark component indicating a long-axis excited state dipole moment. Both the dipole moments and the polarizabilities are corrected within the extended Onsager model for solvent cavity and reaction field effects. It is suggested that symmetry lowering solvent perturbations are the reason for the apparent excited state dipole moments.  相似文献   

11.
The ground state (μ(g)) and the excited state (μ(e)) dipole moments of two coumarin laser dyes, coumarin 440 and 460, were studied at room temperature in various solvents, viz., general solvents, alcohols and liquid crystals at 298 K. In this work, we report dipole moment of laser dyes in different anisotropic (liquid crystal) and isotropic environments for understanding the effects of environments on the molecular dipole moment and comparing them. Ground and excited state dipole moments of coumarin dyes were evaluated by means of solvatochromic shift method. It was observed that dipole moment values of excited states (μ(e)) were higher than the corresponding ground state values (μ(g)) in all media.  相似文献   

12.
The absorption spectra and excited state dipole moments of four differently substituted fulvenes have been investigated both experimentally and computationally. The results reveal that the excited state dipole moment of fulvenes reverses in the first excited singlet state when compared to the ground state. The oppositely polarized electron density distributions, which dominate the ground state and the first excited singlet state of fulvenes, respectively, reflect the reversed π-electron counting rules for aromaticity in the two states (4n + 2 vs. 4n, respectively). The results show that substituents indeed influence the polarity of fulvenes in the two states, however, cooperative interactions between the substituents and the fulvene moiety are most pronounced in the ground state.  相似文献   

13.
CNDO/s-CI and VE-PPP methods have been employed to calculate the dipole moments of the bases of nucleic acids in the ground and excited states. A component analysis in terms of μhyb(σ), μch and μπ has been done using the CNDO/s-CI method and these results have been compared with those obtained by the CNDO/2 and IEHT methods. It is observed that while the CNDO/2 and CNDO/s-CI methods give almost the same total dipole moments, component-wise their predictions are very different.Dipole moments of the molecules have also been studied for the lowest excited singlet and triplet π* ← π states. It is observed that the conventional method of calculating dipole moments using changes of only the net charges in the excited state does not give correct results for uracil and thymine, for which experimental results are available. Considering deformed non-planar excited state geometries for these molecules, the observed excited state dipole moments have been explained. A method has been suggested to include the effects of non-planarity while calculating the properties of a complex molecule in a π* ← π excited state. For adenine, guanine and cytosine, the excited state dipole moments are found to be smaller than the ground state values.  相似文献   

14.
The excited state (S1) dipole moment of m-AMSA (1), an acridine derivative with antitumor activity, was determined from solvatochromic shifts of the lowest energy absorption band in several organic solvents. The effect of the solute shape and the values of polarizability on the determined change of dipole moment between ground and excited state was discussed. The dipole moments in S0 and S1 state were calculated in gas phase with semiempirical quantum-chemical and DFT and CIS methods and in solvents with SM5.4A solvation model and compared with values obtained experimentally. All the results show that the dipole moment of compound 1 in the excited state is higher than that in the ground state. These methods quite well predict the values of Deltamicro between two states of an investigated compound.  相似文献   

15.
A series of N-bonded donor-acceptor derivatives of phenothiazine containing benzene (PHPZ), anisole (ANPZ), pyridine (PYPZ), naphthalene (NAPZ), acetophenone (PEPZ), and benzonitrile (BNPZ) as an electron acceptor was synthesized. Their photophysical properties were investigated in solvents of different polarities by absorption and emission techniques. These studies clearly reveals the existence of an intramolecular charge transfer (ICT) excited state in the latter four compounds. The solvent dependent Stokes shift values were analyzed by the modified Lippert-Mataga equation to obtain the excited state dipole moment values. The large excited state dipole moment suggests that the full electron transfer takes place in the A-D systems. The obtained values of redox potentials indicate that both subunits of all the A-D molecules studied interact very weakly in the ground states. The results obtained from the analysis of the CT fluorescence spectra confirm that the small conformational changes accompanying excited state charge transfer, the twist angle between the donor and acceptor moieties in the excited 1CT state seems to be similar to that in the ground state.  相似文献   

16.
Excited-state dipole moments of some hydroxycoumarins, extensively used as laser dyes, have been determined using the solvatochromic method based on the microscopic solvent polarity parameter EN(T). Agreement between experimental and Austin model 1 (AM 1) calculated dipole moment changes has been found to be close in most of the cases. Our results are expected to be quite reliable in view of the fact that the correlation of the solvatochromic Stokes shifts is superior to that obtained using bulk solvent polarity functions. The dipole moments in the excited state, for all the molecules investigated, are higher than the corresponding values in the ground state. The increase in dipole moment upon excitation has been explained in terms of the nature of emitting state and resonance structure.  相似文献   

17.
The absolute direction of transition moments and the change of the dipole moment upon transition to excited states of acenaphthylene are determined from the influence of an electric field on the optical density of a solution. The results agree well with predictions from PPP-calculations. In the lowest excited state the dipole moment is antiparallel to the ground state dipole moment.  相似文献   

18.
The nonlinear optical molecule N,N-bis(4-bromobutyl)-4-nitrobenzenamine was synthesized. The ground state dipole moment was determined by the Debye-Guggenheim method. A solvent mixture of acetonitrile and toluene was used for the solvatochromic determination of the excited state dipole moment. Excited state has a high value for the dipole moment which indicated a higher degree of charge transfer from the donor to the acceptor moiety on excitation by light. The first hyperpolarizability (beta(ijk)) of the molecule was evaluated assuming the two level model of the first hyperpolarizability.  相似文献   

19.
Excitation of a molecule from the ground state to an electronically excited state can cause changes in its geometry, dipole moment, acidity or basicity, redox potentials and solvation. Bimolecular quenching of the excited state of the probe by other molecules present in the medium can be used to determine the mobilities of molecules and estimate microviscosities and encounter probabilities in the medium. Differences in excited state acidity or basicity relative to the ground state can be employed to investigate the dynamics of ultrafast proton transfer reactions. Three areas of current interest where fluorescent probes have served to elucidate important dynamic processes of molecules in simple self-aggregating surfactant systems such as aqueous micelles and reverse micelles are considered: (a) bimolecular quenching of excited states; (b) the dynamics of solvation of excited states and (c) ultrafast intermolecular excited state proton transfer (ESPT) reactions.  相似文献   

20.
NF (nitrogen monofluoride, fluoroimidogen) is isoelectronic with O2, and, like O2, it has a triplet configuration in the ground state, with two low-lying metastable singlet excited states. The dipole moment of the a 1Delta excited state was measured in 1973 to be 0.37 +/- 0.06 D; at the time its polarity was assumed to be normal (i.e., with the negative charge on the fluorine). However, high-level electronic structure calculations, which reproduce with high accuracy the known spectroscopic constants of the ground and excited states of NF, predict a dipole moment of -0.388 D for a 1Delta NF, indicating that, despite the electronegativities, this molecule carries a positive charge on fluorine. The other singlet state is predicted to have an even larger negative dipole moment; the ground-state triplet should have a very small positive moment. Singlet NF resembles in this respect CO and BF, from the N2 isoelectronic series, both of which also have negative dipole moments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号