首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a step toward the elucidation of the mechanistic pathways governing the known bioactivity of polyoxometalates (POMs), two representative molecules of this class of chemicals, the wheel-shaped [NaP(5)W(30)O(110)]14- (P(5)W(30)) and the Keggin-type anion [H(2)W(12)O(40)]6- (H(2)W(12)), are shown, by two independent techniques, to interact with the fatty-acid-free human serum albumin (HSA). The excited-state lifetime of the single tryptophan molecule of this protein is dramatically decreased by the binding. The quenching mechanism is found to constitute the first example of energy transfer between HSA and POMs. Such molecular recognition is believed to be a key step for subsequent evolution of the systems. Circular dichroism (CD) was used to assess the structural effects of POM binding on HSA and to confirm the interaction revealed by fluorescence studies. CD experiments showed that the two POMs have different effects on the secondary structure of the protein. Binding P(5)W(30) partially unfolds the protein whereas H(2)W(12) has no remarkable effect on the structure of the protein.  相似文献   

2.
Nb-containing polyoxometalates (POMs) of the Wells-Dawson class inhibit HIV-1 protease (HIV-1P) by a new mode based on kinetics, binding, and molecular modeling studies. Reaction of alpha(1)-K(9)Li[P(2)W(17)O(61)] or alpha(2)-K(10)[P(2)W(17)O(61)] with aqueous H(2)O(2) solutions of K(7)H[Nb(6)O(19)] followed by treatment with HCl and KCl and then crystallization affords the complexes alpha(1)-K(7)[P(2)W(17)(NbO(2))O(61)] (alpha(1)()1) and alpha(2)-K(7)[P(2)W(17)(NbO(2))O(61)] (alpha(2)()1) in 63 and 86% isolated yields, respectively. Thermolysis of the crude peroxoniobium compounds (72-96 h in refluxing H(2)O) prior to treatment with KCl converts the peroxoniobium compounds to the corresponding polyoxometalates (POMs), alpha(1)-K(7)[P(2)W(17)NbO(62)] (alpha(1)()2) and alpha(2)-K(7)[P(2)W(17)NbO(62)] (alpha(2)()2), in moderate yields (66 and 52%, respectively). The identity and high purity of all four compounds were confirmed by (31)P NMR and (183)W NMR. The acid-induced dimerization of the oxo complexes differentiates sterically between the cap (alpha(2)) site and the belt (alpha(1)) site in the Wells-Dawson structure (alpha(2)()2 dimerizes in high yield; alpha(1)()2 does not). All four POMs exhibit high activity in cell culture against HIV-1 (EC(50) values of 0.17-0.83 microM), are minimally toxic (IC(50) values of 50 to >100 microM), and selectively inhibit purified HIV-1 protease (HIV-1P) (IC(50) values for alpha(1)()1, alpha(2)()1, alpha(1)()2, and alpha(2)()2 of 2.0, 1.2, 1.5, and 1.8 microM, respectively). Thus, theoretical, binding, and kinetics studies of the POM/HIV-1P interaction(s) were conducted. Parameters for [P(2)W(17)NbO(62)](7)(-) were determined for the Kollman all-atom (KAA) force field in Sybyl 6.2. Charges for the POM were obtained from natural population analysis (NPA) at the HF/LANL2DZ level of theory. AutoDock 2.2 was used to explore possible binding locations for the POM with HIV-1P. These computational studies strongly suggest that the POMs function not by binding to the active site of HIV-1P, the mode of inhibition of all other HIV-1P protease inhibitors, but by binding to a cationic pocket on the "hinge" region of the flaps covering the active site (2 POMs and cationic pockets per active homodimer of HIV-1P). The kinetics and binding studies, conducted after the molecular modeling, are both in remarkable agreement with the modeling results: 2 POMs bind per HIV-1P homodimer with high affinities (K(i) = 1.1 +/- 0.5 and 4.1 +/- 1.8 nM in 0.1 and 1.0 M NaCl, respectively) and inhibition is noncompetitive (k(cat) but not K(m) is affected by the POM concentration).  相似文献   

3.
The spectroscopic properties of the neodymium(III)-containing polyoxometalates (POMs) [Nd(PW(11)O(39))(2)](11-), [Nd(PMo(2)W(9)O(39))(2)](11-), [Nd(PMo(4)W(7)O(39))(2)](11-), [Nd(PMo(6)W(5)O(39))(2)](11-), [Nd(SiMo(2)W(9)O(39))(2)](13-), [Nd(P(2)W(17)O(61))(2)](17-), [NdW(10)O(36)](9-), [NdP(5)W(30)O(110)](12-) and [NdAs(4)W(40)O(140)](25-) are described. Absorption spectra of aqueous solutions of the complexes have been recorded and the transition intensities are parameterised in terms of the Judd-Ofelt intensity parameters Omega(lambda) (lambda=2, 4, 6). Marked differences were found between the luminescence lifetimes of the complexes of the type Nd(POM) and those of the type Nd(POM)(2), due to a better shielding of the neodymium(III) ions from the bulk water molecules in the latter type of complexes.  相似文献   

4.
Chitosan and its derivates continue to attract considerable research interest as effective drug carriers with good biocompatibility and high cellular uptake rates. We used these versatile features to tap the considerable biomedical potential of polyoxometalates (POMs) through their encapsulation into a carboxymethyl chitosan (CMC) matrix. The nanocapsules were prepared by ionic gelification with Ca(2+); their size distribution ranges from 60 to 150 nm. Because [Co(4)(H(2)O)(2)(PW(9)O(34))(2)](10-) is well known for its manifold properties, such as antiviral activity, it was selected as a model POM. The resulting composites were characterised with a wide range of analytical methods, which pointed to quantitative encapsulation of intact POMs within the CMC matrix. We studied the biocompatibility of the POM/CMC nanocomposites on HeLa cells through MTT and proliferation assays. Even after prolonged incubation times at high concentrations, the composites did not display cytotoxicity, thereby drastically reducing the side effects of the pristine POMs. This opens up new avenues for designing novel inorganic drug prototypes from bioactive POMs.  相似文献   

5.
Novel Ti-O-Ti bonding species constructed in a metal-oxide cluster   总被引:2,自引:0,他引:2  
The preparation and structural characterization of a novel Ti-O-Ti bonding complex constructed in the mono-lacunary alpha-Keggin polyoxometalate (POM), are described. The water-soluble, crystalline complex with a formula of K5H2[[{Ti(OH)(ox)}2(micro-O)](alpha-PW11O39)] x 13H2O 1 was prepared in 30.2% (0.60 g scale) yield in a 1 : 3 molar-ratio reaction of the tri-lacunary species of alpha-Keggin POM, Na9[A-PW9O34] x 19H2O, with the titanium(IV) source, K2TiO(ox)2 x 2H2O (H2ox = oxalic acid), in HCl-acidic solution (pH 0.08), and characterized by complete elemental analysis, thermogravimetric and differential thermal analyses (TG/DTA), FTIR, solution (31P, 183W, 1H and 13C) NMR spectroscopy and X-ray crystallography. The complex was also obtained in 47.6% (0.81 g scale) yield in a 1 : 2 molar-ratio reaction of the mono-lacunary Keggin POM, K7[PW11O39] x 10H2O, with the anionic titanium(IV) complex under acidic conditions. The molecular structure of [[{Ti(OH)(ox)}2(micro-O)](alpha-PW11O39)]7- 1a, was successfully determined. This POM in the solid state is composed of one host (mono-lacunary site) and two guests (two octahedral Ti groups), in contrast to most titanium (IV)-substituted POMs consisting of one host and one guest. On the other hand, the 31P NMR measurements revealed that in aqueous solution this POM was present under a dissociation equilibrium which depends upon both temperature and pH.  相似文献   

6.
Electrochemical behaviors of selected Dawson-type polytungstates including 2-K10[P2W15Mo2O61box] where the symbol [box] designates a vacant site, alpha2-K7[Fe(OH2)P2W15Mo2O61], alpha2-K8[Cu(OH2)P2W15Mo2O61], alpha1- and alpha2-K8[Cu(OH2)P2W17O61], alpha2-K8[Cu(OH2)P2W13Mo4O61], and alpha2-K8[Cu(OH2)P2W12Mo5O61] were investigated by cyclic voltammetry (CV) coupled with the electrochemical quartz microbalance (EQCM), and the results were completed by atomic force microscopy (AFM) observations of the electrodeposited films. The electrocatalytic abilities of these polyoxometalates (POMs) in the reduction of dioxygen, hydrogen peroxide, and NOx were also assessed by CV and EQCM. It turns out that the remarkable electrocatalysis obtained at the reduction potential of Mo centers within alpha2-K8[Cu(OH2)P2W15Mo2O61], but in a domain where Cu2+ is not deposited, benefits from the assistance of the copper center because such catalysis could not be observed in the absence of Cu2+. EQCM confirms that no copper deposition occurs under the experimental conditions used. Analogous behaviors are encountered in the electrocatalytic reduction of nitrite where assistance by the presence of the Cu2+ center induced the observation of catalysis at the potential location of Mo centers. Finally, the reduction of nitrate is triggered by electrodeposited copper but was remarkably favored by the presence of molybdenum atoms within these polyoxometalates (POMs). All of the results converge to indicate a cooperative effect between the Mo and Cu centers within these POMs. The various results suggest that copper deposition from these POMs should give morphologically different surfaces. AFM studies confirm this expectation, and the observed morphologies and sizes of particles were rationalized by taking into account the role of the POM skeleton and its atomic composition in the electrodeposition process.  相似文献   

7.
The Dawson-type polyoxometalate (POM) [P(2)V(3)W(15)O(62)](9-) is a prototype for inclusion of carbonyls of amides, ureas, carbamates, and thiocarbamates into polyoxometallic structures. The carbonyl-inserted POMs catalyze the oxidation of sulfides. Chemoselectivity depends primarily on the proton content of the POM, but it is also influenced by the organic substituent.  相似文献   

8.
A robust, stable and processable family of mononuclear lanthanoid complexes based on polyoxometalates (POMs) that exhibit single-molecule magnetic behavior is described here. Preyssler polyanions of general formula [LnP(5)W(30)O(110)](12-) (Ln(3+) = Tb, Dy, Ho, Er, Tm, and Yb) have been characterized with static and dynamic magnetic measurements and heat capacity experiments. For the Dy and Ho derivatives, slow relaxation of the magnetization has been found. A simple interpretation of these properties is achieved by using crystal field theory.  相似文献   

9.
Density functional theory (DFT) calculations were devised to get insight into Lewis acidic catalysis by POMs, especially on the intriguing activation of complexed water molecules that was observed in some experimental cases. Computationally, it appears that deprotonation is feasible with [alpha(1)-Hf(H(2)O)P(2)W(17)O(61)](6-), but not with [alpha(1)-Yb(H(2)O)P(2)W(17)O(61)](7-). This reflects the difference of the electronic structures (diamagnetic for hafnium POM, paramagnetic for ytterbium POM). From a mechanistical point of view, indirect Br?nsted catalysis cannot be excluded in the hafnium case, especially for Mannich reactions. But our calculations show that catalysis by [alpha(1)-Yb(H(2)O)P(2)W(17)O(61)](7-) (and presumably all the lanthanide series) proceeds through direct complexation of the substrates to the POM.  相似文献   

10.
Amphiphilic organo‐polyoxometalates (POMs) used in the radical emulsion polymerization of styrene allowed the preparation in aqueous medium of stable 50–100 nm polystyrene–POM composite latexes. Thanks to the presence of a trithiocarbonate group in the POM amphiphile, POMs could be covalently linked to the polymer particle surface. The chemical and catalytic integrity of the POMs was confirmed, and the POM‐mediated surface photoactivity of the latexes was demonstrated by the spatially controlled nucleation of silver nanoparticles at the periphery of the composites.  相似文献   

11.
Two new Cu(II) azido polyoxometalates compounds have been synthesized, and their structures were determined by X-ray crystallography. The compound Na(14)[SiW(9)O(34)Cu(3)(N(3))(2)(OH)(H(2)O)](2) x 24H(2)O (1) is built from two [SiW(9)O(34)Cu(3)(mu(1,1,3)-N(3))(2)(mu-OH)(H(2)O)](7-) subunits where the copper centers, connected by two azido ligands and one hydroxo group, form a nearly equilateral triangle. The two subunits are related by an inversion center and connected via the two mu(1,1,3)-N(3) ligands in an end-to-end fashion, affording a hexanuclear Cu(II) cluster. Linkage of these fragments via Cu-O=W bonds leads to a bidimensional arrangement of the polyoxometalate units. The complex LiK(14)Na(9)[P(8)W(48)O(184)Cu(20)(N(3))(6)(OH)(18)] x 60H(2)O (2) consists of two {Cu(5)(OH)(4)}(6+) and two {Cu(5)(OH)(2)(mu(1,1,3,3)-N(3))}(7+) subunits connected via four mu-OH and four mu(1,1)-N(3) additional ligands, the 20 copper centers being encapsulated in the [P(8)W(48)O(184)](40-) crown polyoxotungstate ligand. 1 represents the first multidimensional compound based on azido polyoxometalate (POM) units, and 2 represents by far the largest azido POM complex isolated to date. Magnetic measurements revealed an overall antiferromagnetic behavior for both compounds. Nevertheless, the study of the variation of the magnetization with the applied field indicates that 1 possesses a triplet ground state, which can be attributed to weak ferromagnetic interaction between the S = 1/2 triangular subunits. The stability of 1 and 2 evidenced by UV-vis spectroscopy and gel filtration chromatography, in particular at pH 5, has allowed a detailed study of their redox and electrocatalytic properties. For both compounds, the stability of the Cu(II)/Cu(I) couple is remarkable compared with the observations made in other Cu(II)-substituted POMs. Electrochemical quartz crystal microbalance measurements clearly demonstrate that the formation of the Cu(I) species occurs neatly without the formation of Cu(0). The accumulation of such Cu(II) centers within the complexes is a favorable condition to envision applications involving several electrons. The electrocatalytic reduction of dioxygen and hydrogen peroxide was achieved efficiently and has shown that the reactivity increases with the nuclearity and/or the Cu/W ratio of the POM complex. The dioxygen reduction is an overall four-electron process with water as the final product. Finally, the reduction of the W centers triggers a strong electrocatalysis of solvent reduction.  相似文献   

12.
The (183)W nuclear shielding in a variety of tungsten polyoxometalates (POM) (Lindqvist, Anderson, decatungstates, Keggin) of different shapes and charges has been modeled by DFT calculations that take into account relativistic effects, by means of the zero-order regular approximation (ZORA), and solvent effects, by the conductor-like screening model (COSMO) continuum method. The charge/surface area ratio (q/A) is proposed as an indicator of the charge density to which the solvation energies of all POMs are correlated in a satisfactory way. Among the various theoretical levels tested (ZORA scalar or spin-orbit, frozen-core or all-electron basis set, geometry optimization in the gas phase or in the continuum solvent, etc.), the best results are obtained when both geometry optimization in solvent and spin-orbit shielding are included (mean absolute error of delta=35 ppm). The quality of the computed chemical shifts depends systematically on the charge density as expressed by q/A; thus, POMs with low q/A ratios display the best agreement with experimental data. The performance of the method is such that computed values can aid the assignment of the (183)W NMR spectra of polyoxotungstates, as shown by the case of alpha-[PW(11)TiO(40)](5-), whose six signals are ranked computationally so as to almost reproduce the experimental ordering even though the signals are spaced by as little as 5 ppm.  相似文献   

13.
The preparation and structural characterization of a novel Ti-O-Ti bonding complex constructed in a dilacunary alpha-Keggin polyoxometalate (POM), [[{Ti(ox)(H2O)}4(mu-O)3](alpha-PW10O37)](7-) (H2ox = oxalic acid) (1a), are described. The water-soluble, crystalline complex with a formula of K6H[1a].0.5KCl.10H2O (1p) was prepared as the bulk sample in 28.0% (0.51 g scale) yield in a 1:4 molar-ratio reaction of the dititanium(IV)-substituted, dimeric form of an alpha-Keggin POM, K10[(alpha-1,2-PW10Ti2O39)2].18H2O, with the titanium(IV) source K2[TiO(ox)2].2H2O in HCl-acidic solution (pH 0.08). Prior to formation of 1p, the KCl-free crystalline compound (1c) obtained was characterized with X-ray crystallography. The compound 1p was unequivocally characterized with complete elemental analysis, thermogravimetric and differential thermal analyses (TG/DTA), FTIR, and solution (31P, 183W, and 13C) NMR spectroscopy. The molecular structure of 1a was determined. The POM 1a in the solid state was composed of the four octahedral Ti groups (four guests), i.e., the two Ti-O-Ti groups linked with the mu-O atom, incorporated to the two adjacent, octahedral vacant sites (two hosts) in the dilacunary Keggin POM. The formation of 1a, as well as the recently found POM [{Ti(ox)(H2O)}2(mu-O)](alpha-PW11O39)](5-) (2a), was strongly dependent on the reaction with [TiO(ox)2](2-), i.e., the anionic titanium(IV) complex as the titanium(IV) source. The POM 1a is contrasted to most titanium(IV)-substituted POMs consisting of a combination of a monolacunary site (one host) and an octahedral Ti group (one guest) and also contrasted to 2a as a combination of a monolacunary site (one host) and two octahedral Ti groups or a Ti-O-Ti group (two guests).  相似文献   

14.
Original and simple procedures for glassy carbon electrode modification with polyoxometalates (POMs), phosphotungstate [H7P8W48O184]33-, and Co(II)-containing silicotungstates [Co6(H2O)30{Co9Cl2(OH)3(H2O)9(beta-SiW8O31)3}]5- and [{Co3(B-beta-SiW9O33(OH))(B-beta-SiW8O29OH)2}2]22- give stable and very active surfaces for the hydrogen-evolution reaction (HER). For this purpose, the selected POMs fixed on Vulcan XC-72 were adsorbed on the electrode surface or were directly entrapped in polyvinylpyridine films on the electrode. Cyclic voltammetry and confocal microscopy results converge to indicate that the activation is related to the proton and electron reservoir-like behaviors of these molecular oxides and not to any electrode surface area increase. However, the Tafel parameters of the HER process, which are different from one POM to the next, are in the range of those of the best metallic electrodes.  相似文献   

15.
In this minireview, we discuss the recent efforts on expanding the catalytic capabilities of polyoxometalates (POM) through emulsion catalysis approaches with novel catalytic-active POM–organic hybrid clusters as emulsifiers. The hybrid emulsifiers include surfactant encapsulated POM complexes, molecular POMs–organic hybrids, and POM-based solid nanoparticles. With such novel approaches the catalytic efficiency of the POMs can be significantly improved by enhancing the compatibility of the POMs with organic media, providing catalytic interface for biphasic reactions, as well as easier preparation, and better recyclability. Particularly, a simple, green chemistry method to prepare metal nanoparticle materials with POMs as both reducing and capping agents in aqueous is reviewed.  相似文献   

16.
We report the design and preparation of multifunctional hybrid nanomaterials through the stabilization of gold nanoparticles with thiol‐functionalised hybrid organic–inorganic polyoxometalates (POMs). The covalent attachment of the hybrid POM forms new nanocomposites that are stable at temperatures and pH values which destroy analogous electrostatically functionalised nanocomposites. Photoelectrochemical analysis revealed the unique photochemical and redox properties of these systems.  相似文献   

17.
We report the design and preparation of multifunctional hybrid nanomaterials through the stabilization of gold nanoparticles with thiol-functionalised hybrid organic–inorganic polyoxometalates (POMs). The covalent attachment of the hybrid POM forms new nanocomposites that are stable at temperatures and pH values which destroy analogous electrostatically functionalised nanocomposites. Photoelectrochemical analysis revealed the unique photochemical and redox properties of these systems.  相似文献   

18.
A conducting polymer was used for the immobilization of various transition metal ion-substituted Dawson-type polyoxometalates (POMs) onto glassy carbon electrodes. Voltammetric responses of films of different thicknesses were stable within the pH domain 2-7 and reveal redox processes associated with the conducting polymer, the entrapped POMs and incorporated metal ions. The resulting POM doped polypyrrole films were found to be extremely stable towards redox switching between the various redox states associated with the incorporated POM. An amperometric sensor for hydrogen peroxide detection based upon the POM doped polymer films was investigated. The detection limits were 0.3 and 0.6 μM, for the Cu(2+)- and Fe(3+)-substituted POM-doped polypyrrole films respectively, with a linear region from 0.1 up to 2 mM H(2)O(2). Surface characterization of the polymer films was carried out using atomic force microscopy, X-ray photoelectron spectroscopy and scanning electron microscopy.  相似文献   

19.
A complimentary combination of Density Functional Theory (DFT) methodology and Electrospray Ionization-Mass Spectrometry (ESI-MS) has been utilized to increase our limited understanding of the first nucleation steps in the formation of the [XM(12)O(40)](n-) Keggin polyoxometalates (POMs) (where addenda metal atom M = W or Mo, and the heteroatom X = P or As). We postulate that the first key steps of nucleation into discrete, high nuclearity heteropolyanions proceed via the formation of isodinuclear species (e.g. [M(2)O(7)](2-)), which undergo successive steps of protonation and water condensation to form a heterotrinuclear fragment, which acts as a template for the constituent parts required for subsequent aggregation and formation of the plenary Keggin heteropolyanion. The stability of calculated structures of the numerous postulated intermediates has been analysed and discussed in detail, and these results complemented using experimental mass spectrometry, using an assembly (reaction solution analysis) and disassembly (fragmentation of single crystals) approach. Overall, no significant differences between the Keggin POMs were found when changing the addenda metal atom (W or Mo) or the heteroatom (P or As); although small differences among the lowest-energy structures were detected.  相似文献   

20.
Super-reduction of polyoxometalates (POMs) in solution is of fundamental interest for designing innovative energy storage systems. In this article, we show that the “Dawson-like” POM can undergo a disproportionation process during its massive electron uptake, leading to species containing three metal-metal bonds as evidenced by X-ray diffraction, multi-nuclear magnetic resonance spectroscopy (1H and 183W NMR), extended X-ray absorption fine structure (EXAFS), UV/Vis, and voltammetry techniques. This result indicates that electron storing within metal-metal bonds is not a unique property of Keggin-type POM as postulated since the 70s. Besides, we demonstrate that the presence of an electron-rich triad in the “Dawson-like” POM allows its post-functionalization with additional tungstate ions, generating a chiral molecule that is also the largest WIV-containing POMs known to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号