首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With CMOS scaling approaching its limits, there is a great need for advancements in novel devices, disruptive fabrication technologies, advanced materials and alternative computer architectures for future nanoelectronic systems. The emergence of memristive devices is one of promising solutions for the post-CMOS era. In this paper, we first introduce the fabrication of transition metal oxide based memristor cross-bars using nanoimprint lithography (NIL). The fabrication technique is further improved by using only one NIL step, reducing the fabrication efforts and improving the device performance. With shadow evaporation, a host of devices such as 2-terminal lateral memristors and 3-terminal memristive devices (memistors) are also demonstrated. By building memristor cross-bar arrays on foundry-made CMOS substrates using NIL, we have implemented hybrid nano/CMOS architecture. This hybrid chip provides an FPGA-like functionality with reconfigurable memristors defining data paths to wire logic gates into digital circuits. Future trends and issues with fabrication of memristive devices are also briefly discussed.  相似文献   

2.
3.
A prototype memristive device has been presented in this paper, for which the top and bottom electrodes have been fabricated through a simple and cost-effective technique, i.e. electrohydrodynamic printing. For deposition of the bottom electrode pattern, a silver ink containing 60 wt% silver by content was subjected to controlled flow through a metal capillary exposed to an electric field at the ambient temperature to generate an electrohydrodynamic jet, thereby depositing uniform patterns of silver on glass substrate at a constant substrate speed. The top electrode has been deposited in a similar fashion. In between the top and bottom electrodes, a uniform layer of ZnO is fabricated using spin-coating technique. The nanoscale ZnO memristor stack has a channel length of 370 μm and channel width of 82 μm. A memristor thus fabricated was characterized and its current voltage curves were analyzed. The device showed a typical nonvolatile resistive switching behavior present in memristor devices thus highlighting the EHD printed patterning as a reliable method for the fabrication of memory devices.  相似文献   

4.
《Applied Surface Science》2005,239(3-4):335-341
We fabricated contact electrodes in Si for nanoelectronic device fabrication using 40 keV As ion implantation. Complete amorphization of the Si surface with contact electrodes using 400 eV Ar ion irradiation at room temperature followed by annealing at 700 °C produced Si surface with negligible SiC crystallites suitable for ultrahigh vacuum scanning tunneling microscope nanolithography. We could locate the implanted and unimplanted regions on Si and fabricate Si dangling bond wires between two contact electrodes, which is the first step for the fabrication of nanoelectronic devices in Si using UHV STM nanolithography.  相似文献   

5.
Thin films of 7,7′,8,8′ tertracyanoquinodimethane (TCNQ) were deposited using thermal evaporation technique. TCNQ was found to be polycrystalline in powder form and preferred to orient at one plane in thin films. The temperature dependence of the electrical resistivity of Au/TCNQ/Au device was studied. TCNQ thin films were deposited on p-GaAs single crystal substrate; the current-voltage and capacitance-voltage for TCNQ/p-GaAs junction sandwiched between two gold electrodes were investigated. The current of the device obeys the thermionic emission model in the voltage range of 0<V<0.5. The diode parameters such as rectification ratio, series resistance, quality factor and mean potential barrier height were evaluated. The space charge limited conduction dominated by single trapping level is applicable in the voltage range 0.5<V<1.5. The capacitance-voltage measurements showed that the formed junction is abrupt in its nature and the built-in potential is determined. Under illumination, the cell exhibited a photovoltaic characteristic from which the photovoltaic parameters such as open circuit voltage, short circuit current, fill factor and conversion efficiency were calculated.  相似文献   

6.
A crucial challenge in three-dimensional multi-chip assemblies is to establish electrical connections between discrete devices. Here, we apply laser printing of congruent voxels of silver nanopaste for the fabrication of conformal and 3D multi-level interconnects. By controlling laser fluence, various 3D electrodes including freestanding tabs and side contacts over vertical walls can be directly printed without the need for sacrificial layers, chemical etching or electroplating. The electrical characteristics of the printed interconnects are similar to those currently in use by the semiconductor industry. These results are a promising step forward in the generation of customized interconnects for 3D microelectronics.  相似文献   

7.
A simple and controlled method for fabricating nanometer-spaced electrodes is presented. This method uses electron-beam lithography followed by double-angle evaporation of thin metallic films. By simply changing the film thickness, one can adjust the separation of the electrodes. In this method, error is caused mainly by the granularity of the deposited metals. We have observed the Coulomb blockade effect of 20 nm Au colloidal particles captured in a gap fabricated using this method.  相似文献   

8.
Microplasma array devices with coplanar electrodes have been fabricated and operated in neon at pressures up to 684 Torr. The microcavity of the device is composed of a couple of electrodes instead of dielectric or single cathode. The experiment results for the line array with 12 microcavities driven by AC sinusoidal voltage show that the power loading of each microcavity reaches approximately several kW cm−3 and the luminance reaches 2500 cd m−2. The discharge delay time for the devices excited by AC pulse voltage is about 1-3 μs. The lighting patterns of the devices with address electrode validate the addressing ability of the proposed devices.  相似文献   

9.
《Current Applied Physics》2015,15(2):124-128
We use a scanning tunneling microscope-based break-junction technique to compare the probability of the formation of a single-molecule junction for a series of amine-terminated oligophenyl and alkane species using either Ag or Au as electrodes. For all molecules, we find that there is a significantly higher probability of junction formation when using Ag electrodes than with Au electrodes. We also find that longer molecules have a higher probability than shorter molecules to form a junction for both Ag and Au electrodes. For all molecules, the measured molecular junction length that is formed with the Ag electrodes was longer than that formed with Au electrodes. Furthermore, we can make a single atomic oxygen junction and can measure its conductance using Ag electrodes. These observations are attributed to a narrower gap of the Ag electrodes compared to that of the Au electrodes after the metal contact ruptures. Since there is a high probability of a molecular junction forming when using Ag electrodes, we can therefore perform a statistical analysis within the context of the material properties that are suitable for future molecular electronics.  相似文献   

10.
The fabrication and performance characteristics of coplanar contact etched mesa-buried heterostructure (EMBH) distributed feedback (DFB) lasers emitting at 1.3μm wavelength are described. The processing was designed such that the lasers could be evaluated as coplanar contact or conventional (top/bottom) contact devices. The threshold current was as low as 14mA and the 3dB small signal response was as high as 9.4 GHz. Both these properties showed negligible differences when the device was biased either coplanarly or conventionally.  相似文献   

11.
Present information technologies use semiconductor devices and magnetic/optical disc. However, they are all foreseen to face fundamental limitations within a decade. Therefore, superseding devices are required for the next paradigm of high performance information technologies. This paper describes prospects for single molecule devices suitable for future information processing technologies, which are expected as the most probable candidate to supersede the present semiconductor devices. The first milestone towards the realization of single molecule devices in future electronics requires quantitative evaluation of single molecule characteristics, which inevitably needs planar nano-gap electrodes between which single molecules are sandwiched, observed their structures and measured their electrical characteristics. Nano-meter electrode pattern fabrication was achieved by electron beam lithography and metal lift-off, while planarization process requires many new technologies including chemical–mechanical polishing (CMP) and wafer bonding. The detailed planarization processing technologies are described in this paper to realize nm-planar nano-scale electrodes.  相似文献   

12.
The reflection properties of top-emitting organic light-emitting devices with different electrodes and organic layers were calculated. The results guided the fabrication of a high-contrast device: Au/copper phthalocyanine (CuPc: 35 nm)/N,N’-bis-(1-naphthyl)-N,N’diphenyl-1,1’ biphenyl-4,4’diamine (NPB: 15 nm)/tris(8-hydroxyquinoline) aluminum (Alq3: 50 nm)/Sm (35 nm)/Alq3 (65 nm). The device has a contrast ratio of 8.3:1 at a luminance of 300 cd/m2 under 1000 lx ambient light, and a maximum luminance and efficiency of 5000 cd/m2 and 4.14 cd/A, respectively. The high contrast is attributed to the moderate reflection of Au at 380–550 nm, low reflection of Sm in the visible range, and high absorption of CuPc at 600–700 nm. PACS 85.60.Jb; 78.20.Ci; 78.40.-q  相似文献   

13.
The fabrication and performance characteristics of coplanar contact etched mesa-buried heterostructure (EMBH) distributed feedback (DFB) lasers emitting at 1.3μm wavelength are described. The processing was designed such that the lasers could be evaluated as coplanar contact or conventional (top/bottom) contact devices. The threshold current was as low as 14mA and the 3dB small signal response was as high as 9.4 GHz. Both these properties showed negligible differences when the device was biased either coplanarly or conventionally.  相似文献   

14.
樊帅伟  王日高 《物理学报》2018,67(21):213101-213101
研究表明分子器件的性能受器件结构搭建精度影响,分子与电极接触构型的微弱变化可能引起电输运特性较大差异.本文运用密度泛函理论和非平衡格林函数相结合的方法,研究了由金纳米线与benzene-1,4-dithiol(BDT)形成的分子结的电输运性质.通过对不同的Au-BDT接触构型输运性质的研究,发现当两电极处于对位构型时,有较好的电荷输运行为,而且比较符合制备工艺要求;当电极偏离轴线的角度不大于5°,且电极散射截面尺寸不小于4×4时,该分子结体系的电导和透射谱均比较稳定.电极截面尺寸小于4×4或者电极偏离轴线的夹角大于5°时,透射谱在费米能级附近出现不连续现象,导致体系电导降低.较小电极截面尺寸或者电极以较大角度偏离轴线将导致该分子结体系电导降低和透射谱连续性降低,主要是组成电极的金原子轨道与苯基分子轨道耦合缺失造成的.该研究为Au-BDT-Au体系设计和制备过程中电极的位置及电极截面尺寸做了科学的界定.  相似文献   

15.
Cu electroplating is required for the fabrication of Cu/low-k interconnections. The permeation of a plating solution into low-k films during Cu electroplating is a serious challenge for 45-nm nodes and more complex devices. We investigated the influence of Cu electroplating solutions on boron carbon nitride (BCN) as a low-k film. After dipping it into a Cu electroplating solution that contained additives, the BCN film's hydrophilic surface changed to a hydrophobic surface, and the incorporation of water into the BCN film was suppressed by surfactant adsorption. Sulfuric residue was detected on the BCN sample by thermal desorption spectroscopy after treatment in the Cu electroplating solution with additives; however, it was found through electrical measurements that this solution did not affect the leakage current or the dielectric constant of the BCN film. We successfully fabricated an electroplating Cu layer on a BCN film with good adhesion, and we believe that this BCN film is a sufficiently useful material for Cu/BCN integration in LSI.  相似文献   

16.
霍新霞  王畅  张秀梅  王利光 《物理学报》2010,59(7):4955-4960
采用基于密度泛函理论(DFT)和非平衡格林函数(NEGF)的第一性原理方法对富勒烯C32分子及在C32分子的距离最远的两个碳原子处连接Au(1,1,1)电极的分子器件进行了电子结构和电子输运性质的研究.考虑到中间分子与Au电极间距离变化的情况,通过计算得出了在不同距离下分子器件的电子传输谱和I-V特性,分析了各器件的电子结构和电子输运特性产生的原因,并分析了电极与中间分子的连接距离及门电压对分子器件电子输运的影响.得出了电极与所连接的中间分子之  相似文献   

17.
This paper deals with CO2 laser machining of a suitable amorphous polymer (PMMA) as a flexible technique for the rapid fabrication of miniaturized structures such as microfluidic devices.A model to estimate the main dimensions (depth and width) of the grooves produced by the laser on PMMA is presented, taking into account the influence of the main process parameters (incident power, scanning speed and spot diameter). This theoretical model allows to control the engraving process showing that laser could represent a valid alternative for the production of microchannels. PMMA single-use devices are found to be easier to manufacture with respect to the conventional glass or silicon products.In a second step, IR laser vaporization is adopted for the removal of a single layer of PMMA. This is achieved using multiple overlapping sequences of straight grooves with different scanning directions. The proposed technique showed that the removal depth varied proportionally with the number of layers machined, while surface roughness is influenced by the grooves spacing and the orientation of the scanning direction between successive layers.A method for thermally bonding the PMMA sheets, constituting the 3D structure of the chip, is also presented. The combination of high temperatures and low bonding pressures makes it possible to generate a bulk junction enabling good performances in terms of sealing characteristics.  相似文献   

18.
We report the fabrication of electrically functional polyaniline thin-film microdevices. Polyaniline films were printed in the solid phase by Laser-Induced Forward Transfer directly between Au electrodes on a Si/SiO2 substrate. To apply solid-phase deposition, aniline was in situ polymerized on quartz substrates. Laser deposition preserves the morphology of the films and delivers sharp features with controllable dimensions. The electrical characteristics of printed polyaniline present ohmic behavior, allowing for electroactive applications. Results on gas sensing of ammonia are presented.  相似文献   

19.
利用密度泛函理论结合非平衡格林函数方法,研究了不同拓扑能带结构的石墨烯电极分子器件输运特性.结果表明器件导通电压与电极禁带宽度正相关,同时器件在输运过程中表现出负微分电阻特性,峰谷电流比可达2697.分析认为器件导通源自于偏压升高过程中两电极能带匹配.器件负微分电阻特性源自于偏压升高过程中两电极能带交错.散射态分析表明,能带匹配后散射态分布较为离域,有利于电子通过器件.能带交错后散射态局域于电极处,表明电子输运受到抑制.  相似文献   

20.
Single-wall carbon nanotubes were synthesized on specified parts of oxidized silicon substrates by single acetylene burst CVD and studied with high-resolution scanning electron and scanning probe micro-scopes. The resistance of individual nanotubes and nanotube series was measured using devices fabricated by the deposition of Pd and Pd/Al electrodes on the obtained single-wall nanotubes. The contact potential difference between Pd electrodes and carbon nanotubes was measured in the Kelvin mode of a scanning probe microscope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号