首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of the space-time structure of tightly focused femtosecond light packets in a transparent condensed medium (fused silica) is analyzed by means of numerical simulation. The nonlinear self-action of light packets leads to the formation of ultrashort pulses (duration of about 10 fs) propagating in various directions. The spectral composition, time structure, and position of ultrashort pulses at the time axis depend on their propagation direction.  相似文献   

2.
We propose a design of an all-fiber laser system that combines the most advanced Er:fiber laser in the telecommunication range and an efficient Yb-doped amplifier for generation of high-power ultrashort pulses. The system is based on nonlinear wavelength conversion of 1.56 μm ultrashort Er:fiber laser pulses to the 1 μm range in a short pigtail of dispersion-shifted silica fiber with subsequent amplification in the Yb-doped fiber amplifier. Pulses with a duration as short as 85 fs and averaged power of 200 mW are demonstrated.  相似文献   

3.
Nahata A  Heinz TF 《Optics letters》1998,23(11):867-869
We describe the generation of subpicosecond electrical pulses by optical rectification of ultrashort optical pulses. The electrical pulses are generated by the second-order nonlinear response of a LiTaO(3) crystal bonded to a coplanar transmission line. A bipolar temporal waveform with a width of 875 fs was measured after a propagation distance of 175mum . This pulse width was limited by the response time of the photoconductive sampler. We observed both broadening and amplitude reduction in the temporal waveform owing to propagation.  相似文献   

4.
We report femtosecond pulse generation and chirped pulse amplification in Tm:fiber. A mode-locked oscillator operating in the soliton regime produced 800 fs pulses with 5 nm spectral bandwidth, at 40 pJ pulse energy. This oscillator seeded a pre-amplifier that utilizes a Raman soliton self-frequency shift to produce wavelength tunable pulses with 3 nJ energy, reduced pulse duration of 150 fs, and increased bandwidth of 30 nm. For further amplification, the pulses were stretched up to 160 ps using a chirped Bragg grating (CBG). Stretched pulses were amplified to 85 nJ after compression in single-mode Tm:fiber and recompressed with the CBG as short as 400 fs. Compressed pulses were coupled into a highly nonlinear tellurite fiber to investigate the potential of this ultrashort pulse 2-μm fiber source as a pump for mid-IR supercontinuum generation.  相似文献   

5.
We observe that nanojoule femtosecond pulses that are spectrally broadened in a microstructured fiber acquire excess noise. The excess noise is manifested as an increase in the noise floor of the rf spectrum of the photocurrent from a photodetector illuminated by the pulse train from the laser oscillator. Measurements are made of the intensity dependence of the excess noise for both 100 fs and sub-10 fs pulses. The excess noise is very strong for 100 fs pulses, but barely measurable for sub-10 fs pulses. A rigorous quantum treatment of the nonlinear propagation of ultrashort pulses predicts that, for a fixed generated bandwidth, the amount of excess noise decreases with pulse duration, in agreement with the experimental results.  相似文献   

6.
The third-order optical nonlinearity, χ (3), is measured in transparent glasses (BK7 and fused silica) and crystals (BaF2 and quartz) using 36-fs, 800-nm laser pulses and the optical Kerr gate (OKE) technique; values are found to lie in the range 1.3–1.7×10-14 esu, in accordance with theoretical estimates. We probe the purely electronic response to the incident ultrashort laser pulse in fused silica and BK7 glass. In BaF2 and quartz, apart from the electronic response we also observe contribution from the nuclear response to the incident ultrashort pulses. We observe oscillatory modulations that persist for ~400 fs. The response of the media (glasses and crystals) to ultrashort pulses is also measured using two-beam self-diffraction; the diffraction efficiency in the first-order grating is measured to be in the range of 0.06–0.13 %. Third harmonic generation due to self-phase matching in the transient grating geometry is measured as a function of temporal delay between the two incident ultrashort pulses, yielding the autocorrelation signal.  相似文献   

7.
Zhou  H.  Li  W. X.  Zeng  H. P. 《Laser Physics》2011,21(2):399-403
We report on the generation of wave-breaking-free pulses from an Yb-doped fiber oscillator at 1.03 μm by using the nonlinear polarization rotation mode-locking. The average output power reached 113 mW as limited by available pump power of 578 mW. The generated pulses had a pulse energy up to 2 nJ and could be externally compressed down to 41 fs. The output pulses exhibited a smooth spectrum without any side lobe or temporal wave-packet breaking due to the nonlinear phase modulation in an additional Erdoped fiber acted as a saturable absorber in the fiber laser.  相似文献   

8.
Chi-Feng Chen  Sien Chi 《Optik》2005,116(7):331-336
A propagation of the femtosecond second-order solitons in an optical fiber is studied. We show that a generalized nonlinear Schrödinger equation well describes the propagation of the second-order soliton even containing only a few optical cycles. The propagations of a 50 fs and a 10 fs second-order soliton in an optical fiber are numerically simulated. It is found that, for the case of 10 fs second-order soliton, the soliton decay is dominated by the third-order dispersion, in contrast to the case of 50 fs second-order solitons, where the soliton decay is dominated by the delayed Raman response. It is also found that the exact delayed Raman response form must be used for the propagation of the 50 fs or less than 50 fs second-order soliton.  相似文献   

9.
We report the results of a systematic study of white light generation in different high band-gap optical media (BaF2, acrylic, water and BK-7 glass) using ultrashort (45 fs) laser pulses. We have investigated the influence of different parameters, such as focal position of the incident laser light within the medium, the polarization state of the incident laser radiation and the pulse duration of the incident laser beam on the white light generation. Our results indicate that for intense, ultrashort pulses, the position of physical focus inside the media is crucial in the generation, with high efficiency, of white light spectra over the wavelength range 400–1100 nm. Linearly polarized incident laser light generates white light with higher intensity in the blue region than circularly polarized light. Ultrashort (45 fs) pulses generate a flatter spectrum with higher white light conversion efficiency than longer (300 fs) pulses of the same laser power. We believe that a flat response over a wide range of wavelengths in the continuum may be efficiently compressed for generation of sub-10 fs pulses. PACS 52.38.Hb; 42.65.Jx; 42.65.Tg; 33.80.Wz; 52.35.Mw  相似文献   

10.
A specific scheme is used for fiber delivery of ultrashort pulses using conventional elements. Starting from a standard femtosecond Ti:Al(2)O(3) oscillator (150 fs @ 830 nm), perfectly compressed ultrashort pulses with a duration of 45 fs are produced at the output of a standard two meter long single-mode fiber. The setup allows compensating independently and simultaneously second and third orders of chromatic dispersion as well as management of self-phase modulation in the fiber. It includes an optimized dispersion compensation line made of the assembly of diffraction gratings and prisms. The unsurpassed performances of the device are experimentally and numerically highlighted. Fiber delivery of sub-30 fs multinanojoule pulses is discussed.  相似文献   

11.
Raman response function for silica fibers   总被引:1,自引:0,他引:1  
Lin Q  Agrawal GP 《Optics letters》2006,31(21):3086-3088
The commonly used Lorentzian form of the Raman response function for studying propagation of ultrashort pulses in silica fibers does not properly account for the shoulder in the Raman gain spectrum originating from the Boson peak. We propose a more accurate form of this response function and show that its predictions for the Raman-induced frequency shift should be in better agreement with experiments.  相似文献   

12.
13.
It is shown that sub-diffractive (self-collimating) propagation of ultrashort pulses of narrow light beams is possible in two dimensional planar photonic crystal slabs (in particular made with air holes in Si3N4 slab) where the sub-diffractive propagation of monochromatic beam of visible light has been demonstrated previously both theoretically and numerically. We found that the sub-diffractive propagations of the pulses of duration of more than 40 fs are indistinguishable from that of monochromatic beams. However, for the pulses with duration less than 40 fs their propagation peculiarities associated with asymmetric spatiotemporal misshaping, spatial and temporal broadening come into play. The effects are pronounced for the pulses of duration less than 20 fs. The phenomena are shown for both TM and TE polarized light by means of numerical integration of 2D Maxwell’s equations with finite-difference time-domain technique.  相似文献   

14.
We consider the influence of the polarization mode dispersion, which is stipulated by the presence of random inhomogeneities in single-mode fiber lightguides, on the propagation of ultrashort optical pulses in the fiber communication lines with very weak linear birefringence. Evolution of the envelope of ultrashort optical pulses and their spectra as functions of the length of a single-mode fiber lightguide with very weak linear birefringence and random inhomogeneities are obtained by the method of mathematical simulation. An increase in the pulse duration is shown to be proportional to the square root of the length of a single-mode fiber lightguide. The numerical-simulation results are compared with the results of experimental measurements of the polarization mode dispersion.  相似文献   

15.
The combination of dispersive magnetic permeability with nonlinear polarization leads to a series of nonlinear dispersion terms in the propagation equations for ultrashort pulses in metamaterials. Here we present an investigation of modulation instability (MI) of both coherent and partially coherent ultrashort pulses in metamaterials to identify the role of nonlinear dispersion in pulse propagation. The Wigner–Moyal equation for partially coherent ultrashort pulses and the nonlinear dispersion relation for MI in metamaterials are derived. Combining the standard MI theory with the unique properties of the metamaterial, the influence of the controllable first-order nonlinear dispersion, namely self-steepening, and the second-order nonlinear dispersion on both coherent and partially coherent MI, in both negative-index and positive-index regions of the metamaterial for all physically possible cases is analyzed in detail. For the first time to our knowledge, we demonstrate that the role of the second-order nonlinear dispersion in MI is equivalent to that of group-velocity dispersion (GVD) to some extent, and thus due to the role of the second-order nonlinear dispersion, MI may appear in the otherwise impossible cases, such as in the normal GVD regime. PACS 42.25.Kb; 42.65.Sf; 78.20.Ci  相似文献   

16.
The Raman response function and Raman nonlinear index of phosphosilicate fibers are calculated for several P2O5 concentrations. The nonlinear index of phosphosilicate fiber is estimated by using the Boling formula, and it is used to calculate the Raman fraction of the nonlinear index. On the other hand, the Raman response function of the phosphosilicate fibers is fitted to a superposition of six phase-shifted under-damped functions in order to use it in the numerical simulation of ultra-short pulse propagation. We show through numerical simulations that phosphosilicate fibers are a suitable medium to observe a scaling up of the Raman self-frequency shift when compared to silica fibers.  相似文献   

17.
Nahata A 《Optics letters》2001,26(6):385-387
The nonlinear optical generation and detection of subpicosecond electrical pulses on coplanar transmission lines is demonstrated. The electrical pulses are generated by optical rectification of ultrashort optical pulses and detected by electro-optic sampling. Both processes are the result of a second-order nonlinear optical response that occurs in the same poled polymer medium. A bipolar temporal waveform with a FWHM duration of 180 fs for the positive lobe that was measured after a propagation distance of 125 mum was observed. Pulse broadening was minimized by careful attention to the device structure.  相似文献   

18.
<正>弦相位调制脉冲可以满足高能激光驱动器对宽带和束匀滑的要求,在光纤系统中传输后,由于光纤中群速度色散的作用,将会产生强度调制,从而加剧光纤功率放大器中的非线性效应和光谱整形的难度.通过对2GHz,14·25GHz正弦相位调制脉冲经过不同光纤长度传输实验为例,结合光纤系统中色散对FM-AM效应影响的理论分析,发现2GHz相位调制脉冲的实验结果与模拟结果符合较好.  相似文献   

19.
Soliton self-frequency shift (SSFS) in a photonic crystal fiber (PCF) pumped by a long-cavity mode-locked Cr:forsterite laser is integrated with second harmonic generation (SHG) in a nonlinear crystal to generate ultrashort light pulses tunable within the range of wavelengths from 680 to 1800?nm at a repetition rate of 20?MHz. The pulse width of the second harmonic output is tuned from 70 to 600?fs by varying the thickness of the nonlinear crystal, beam-focusing geometry, and the wavelength of the soliton PCF output. Wavelength-tunable pulses generated through a combination of SSFS and SHG are ideally suited for coherent Raman microspectroscopy at high repetition rates, as verified by experiments on synthetic diamond and polystyrene films.  相似文献   

20.
We report on the recent design and fabrication of kagome-type hollow-core photonic crystal fibers for the purpose of high-power ultrashort pulse transportation. The fabricated seven-cell three-ring hypocycloid-shaped large core fiber exhibits an up-to-date lowest attenuation (among all kagome fibers) of 40 dB/km over a broadband transmission centered at 1500?nm. We show that the large core size, low attenuation, broadband transmission, single-mode guidance, and low dispersion make it an ideal host for high-power laser beam transportation. By filling the fiber with helium gas, a 74?μJ, 850?fs, and 40?kHz repetition rate ultrashort pulse at 1550?nm has been faithfully delivered at the fiber output with little propagation pulse distortion. Compression of a 105?μJ laser pulse from 850?fs down to 300?fs has been achieved by operating the fiber in ambient air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号