首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Superradiance (SR) from an electron bunch moving in a waveguide and oscillating in the field of helical wiggler is analysed for the specific group synchronism regime which occurs when the electron translational velocity coincides with the wave group velocity. In the comoving reference frame such a regime corresponds to emission at a quasi cutoff frequency. Both linear and nonlinear analysis demonstrate the advantages of the group synchronism regime for wiggler SR. Detuning from this regime leads to a fast drop in both the gain of the instability and peak power of the SR pulse.  相似文献   

2.
The quantum modulation of an electron beam in the field of opposite electromagnetic waves, at a frequency equal to the difference of the wave frequencies, and its harmonics, is obtained. The depth of the modulation becomes of order one at relatively small intensities of the laser fields (including a real spreading of the beam). In the case of equal frequencies of the waves (when the Kapitza-Dirac effect occurs particles form a beam. An experiment for obtaining a modulated beam of particles at the frequencies of the laser radiation, and its harmonics, as well as for bunching of particles in the field of a standing wave is suggested.  相似文献   

3.
利用部分波展开法求解得到了Gauss声束入射下刚性和非刚性椭圆柱的声散射系数,推导了一般情况下的声辐射力矩表达式.在此基础上,通过一系列数值仿真详细分析了离轴距离、入射角度和束腰半径对声辐射力矩的影响.结果表明:正向与负向声辐射力矩均可以在一定条件下存在;低频情况下刚性椭圆柱比非刚性椭圆柱更容易产生较强的声辐射力矩;特定频率的入射声场可以激发出非刚性椭圆柱不同阶的共振散射模式,因而非刚性椭圆柱的声辐射力矩峰值与频率的关系更密切;增加束腰半径有利于扩大散射截面,进而增加椭圆柱的声辐射力矩.该研究结果预期可以为利用声辐射力矩实现粒子的可控旋转和流体黏度的反演提供一定的理论指导.  相似文献   

4.
The introduction of a plasma and a strong guide magnetic field in a free electron laser (FEL) slows down the phase velocity of radiation, significantly reducing the requirements on beam energy for generating frequencies below the electron-cyclotron frequency (ω1≲ωc). Around plasma resonance (ω1p), the FEL mode couples to two-stream instability (TSI), attaining a large growth rate, comparable to that of the wiggler-free TSI. At plasma densities comparable to beam density, the beam-induced local depression in the electron density of the plasma acts as a waveguide for guiding any high-frequency radiation when the beam current is ≳17 kA  相似文献   

5.
Coupled equations describing the radial and translational dynamics of an encapsulated gas bubble in an ultrasound field are derived by using the Lagrangian formalism. The equations generalize Church's theory by allowing for the translation motion of the bubble and radiation losses due to the compressibility of the surrounding liquid. The expression given by Church for the inner bubble radius corresponding to the unstrained state of the bubble shell is also refined, assuming that the shell can be of arbitrary thickness and impermeable to gas. Comparative linear analysis of the radial equation is carried out relative to Church's theory. It is shown that there are substantial departures from predictions of Church's theory. The proposed model is applied to evaluate radiation forces exerted on encapsulated bubbles and their translational displacements. It is shown that in the range of relatively high frequencies encapsulated bubbles are able to translate more efficiently than free bubbles of the equivalent size.  相似文献   

6.
We analyze the response of a dipole antenna to the noise-like and/or regular (quasimonochromatic) plasma oscillations and waves. The antenna is immersed in an isotropic plasma moving with velocity greater than the electron thermal velocity. In the case of a noise field, we calculate the squared spectral power density of the noise voltage at the input of a receiving antenna for frequencies close to the electron plasma frequency. It is shown that the main contribution to the noise is made by the radiation due to the excitation of waves at anomalous Doppler frequencies. In the case of an incident monochromatic wave, the mean square voltage at the antenna input is calculated as a function of the wave frequency and angle of arrival. It is shown that the effective antenna length can differ strongly from the geometrical length of the dipole. This fact results from the dispersion of longitudinal waves ensuring that many plane waves (a continuum, in the limiting case) contribute to the re-radiated field for a given direction of propagation of the radiation energy.  相似文献   

7.
Parametrical excitation of surface type X-modes (STXM) at the second harmonic of electron cyclotron frequency by nonmonochromatic external alternating electric field is under consideration. STXM are the eigenmodes of a planar magnetoactive plasma waveguide structure consisting of a metal wall with dielectric coating and uniform plasma filling. An external steady magnetic field is applied along the plasma interface, so it is perpendicular to the group velocity of the considered extraordinarily polarized waves. Influence of the plasma waveguide parameters on the parametrical instability of the STXM is studied. External alternating electric field is assumed to consist of two fields with different amplitudes and frequencies. A theoretical investigation is carried out using kinetic equation for plasma particles under the conditions of weak plasma spatial dispersion and small amplitudes of external electric fields. The obtained results can be useful for research in branch of edge plasma physics.  相似文献   

8.
Plasma instability caused by an inhomogeneous energy density distribution is considered. It is shown that this instability can lead to the excitation of electrostatic ion-cyclotron and oblique ion-acoustic waves, generated in the presence of an inhomogeneous transverse electric field and a shear in the parallel drift velocity of the plasma particles. The considered physical mechanisms of the instability generation in plasma can serve as possible sources of broadband electrostatic turbulence in the auroral ionosphere.  相似文献   

9.
The instability of plasma waves is influenced by many factors, such as quantum effects and electrical thermal motion. However, in sufficiently small electronic devices, viscous electron flows can be generated from the electronic interactions and govern electronic transport. The strong influence of the viscous electron fluid on plasma wave instability in field effect transistors(FET) was analyzed in this study. The theoretical results show that the instability increment and radiation frequency are functions of the Mach number, and the instability increment. Further, the computer simulative data show that the radiation frequencies increase within a certain range and the instability increment decreases owing to the presence of viscous electron flows. Therefore, it can be concluded that the viscous electron flow FETs exerts considerable influence on the characteristics of the terahertz wave.  相似文献   

10.
The states of a charged particle with a finite free path are determined in the field of a resonant electromagnetic wave. The exact resonance conditions, the modulation and beam instability mechanisms, the charge and current densities (Ohm's law) are obtained for the collisionless beam of resonance particles. Quantum theory of radiation is developed for the resonant adiabatic interaction between a particle and a wave taking into account the interaction with a constant magnetic field induced at the grating surface by the charge and nonresonant waves. The radiation power, the spectrum, and the range of generated frequencies are determined. The results obtained can be used in the plasma and solid-state theories and in electronics.  相似文献   

11.
An expansion of the field of a vertical antenna located in an inhomogeneous waveguide in terms of the normal waves of a homogeneous reference waveguide is obtained. The frequency dependence of the radiation resistance is analyzed numerically for various antenna depths and sound velocity profiles. Variations in the radiation resistance are correlated with the variations in the sound velocity.  相似文献   

12.
Radiation produced by oscillations of an electric dipole moving along its dipole moment through an insulator with the resonance-type dispersion is considered. The total power of radiation and the power density spectrum are studied both analytically and numerically. It is shown that the radiation spectrum consists of either two separate frequency ranges or a single frequency range depending on the parameters of the problem. The dependences of the radiation power on the velocity of the source are revealed for various values of the resonant and Langmuir frequencies.  相似文献   

13.
The effect of translational velocity of active atoms and molecules on the properties of photon echo is investigated using the technique of coherent transient processes. A variation in the photon-echo decay with a frequency detuning of the excitation radiation relative to the center of the vibrational-rotational transition 0 ? 1 ν3 R(4, 3) is observed in a mixture of 13CH3F with atomic buffers. The results are interpreted using the dependence of the echo decay rate on the magnitude of the translational velocity of active particles. The dependence of the relaxation matrix on the direction of the velocity of active atoms results in a new phenomenon of the collision-induced echo, which is investigated at the transition 0 ? 1 174Yb in mixtures with atomic buffers.  相似文献   

14.
A theory of reflection and transmission of electromagnetic radiation by inhomogeneities of the parameters of a static transparent medium moving at the velocity of light is developed. Expressions are obtained for the Doppler frequency shift of radiation; it turns out that, under the condition of pronounced frequency dispersion, the frequency of incident radiation corresponds to two frequencies of reflected radiation (complementary waves). It is found that, as the velocity of an inhomogeneity tends to the phase velocity of radiation in the medium, the reflection and transmission coefficients of radiation by the inhomogeneity indefinitely increase. It is shown that the electromagnetic radiation frequency may increase severalfold, with a transformation coefficient of about unity, due to the Doppler shift by the inhomogeneities of a nonlinear medium that are induced by pulses (solitons) of intense counterpropagating radiation.  相似文献   

15.
The effects of suspended particles and the finite thermal and electrical conductivities on the magnetogravitational instability of an ionized rotating plasma through a porous medium have been investigated, under varying assumptions of the rotational axis and the modes of propagation. In all the cases it is observed that the Jeans' criterion determines the condition of instability with some modifications due to various parameters. The effects of rotation, the medium porosity, and the mass concentration of the suspended particles on instability condition have been removed by (1) magnetic field for longitudinal mode of propagation with perpendicular rotational axis, and (2) viscosity for transverse propagation with rotational axis parallel to the magnetic field. The mass concentration reduces the effects of rotation. Thermal conductivity replaces the adiabatic velocity of sound by the isothermal one, whereas the effect of the finite electrical conductivity is to delink the alignment between the magnetic field and the plasma. Porosity reduces the effects of both the magnetic field and the rotation, on Jeans' criterion.  相似文献   

16.
A dispersion relation for the ion-acoustic instability in a dc-discharge is derived. The dc electric field term in the linearized Vlasov-equation is not neglected, and the ion drift velocity is taken into account. Collisions of the electrons and ions with the neutrals are considered on the basis of a Davy-dov-collision term. The influence of the dc field and the ion drift leads to higher values of the spatial growth rates in the low frequency range and a shift of the maximum of the growth rates and the high frequency boundary of the unstable waves toward lower frequencies. The phase velocity diminishes, what is, above all, a result of the consideration of the ion drift velocity.  相似文献   

17.
Modelling of particle paths passing through an ultrasonic standing wave   总被引:3,自引:0,他引:3  
Townsend RJ  Hill M  Harris NR  White NM 《Ultrasonics》2004,42(1-9):319-324
Within an ultrasonic standing wave particles experience acoustic radiation forces causing agglomeration at the nodal planes of the wave. The technique can be used to agglomerate, suspend, or manipulate particles within a flow. To control agglomeration rate it is important to balance forces on the particles and, in the case where a fluid/particle mix flows across the applied acoustic field, it is also necessary to optimise fluid flow rate. To investigate the acoustic and fluid forces in such a system a particle model has been developed, extending an earlier model used to characterise the 1-dimensional field in a layered resonator. In order to simulate fluid drag forces, CFD software has been used to determine the velocity profile of the fluid/particle mix passing through the acoustic device. The profile is then incorporated into a MATLAB model. Based on particle force components, a numerical approach has been used to determine particle paths. Using particle coordinates, both particle concentration across the fluid channel and concentration through multiple outlets are calculated. Such an approach has been used to analyse the operation of a microfluidic flow-through separator, which uses a half wavelength standing wave across the main channel of the device. This causes particles to converge near the axial plane of the channel, delivering high and low particle concentrated flow through two outlets, respectively. By extending the model to analyse particle separation over a frequency range, it is possible to identify the resonant frequencies of the device and associated separation performance. This approach will also be used to improve the geometric design of the microengineered fluid channels, where the particle model can determine the limiting fluid flow rate for separation to occur, the value of which is then applied to a CFD model of the device geometry.  相似文献   

18.
In this paper, we have examined the filamentation instability of laser radiation in a GaAs sample in the negative differential resistivity region. A dc electric field is applied to assist the laser beam transferring electrons in the conduction band from the lower valley to upper satellite valleys, i.e. in increasing the effective mass of electrons. The instability causes the space charge perturbations in the microwave range of frequencies. The nonlinearity arises through the energy dependence of the effective mass and the ponderomotive force on the electrons. The instability has finite frequency and possesses large growth rate which is greatly influenced by the dc electric field.  相似文献   

19.
An exact study of radiation of an acoustic field due to radial/axial vibrations of a baffled cylindrical piston, eccentrically positioned within a fluid-filled thin cylindrical elastic shell, into an external fluid medium is presented. This configuration, which is a realistic idealization of a liquid-filled cylindrical acoustic lens with a focal point inside the lens when used as a sound projector, is of practical importance with a multitude of possible applications in underwater acoustics and ocean engineering. The formulation utilizes the appropriate wave field expansions along with the translational addition theorems for cylindrical wave functions to develop a closed-form solution in the form of an infinite series. Numerical results reveal the key effects of excitation frequency, cap angle, radiator position (eccentricity), dynamics of the elastic shell, and cap surface velocity distribution on sound radiation.  相似文献   

20.
The mechanism of the Weibel instability is investigated for dense magnetized plasmas. As we know, due to the electron velocity distribution, the Coulomb collision effect of electron-ion and the relativistic properties play an important role in such study. In this study an analytical expression for the growth rate and the condition of restricting the Weibel instability are derived for low-frequency limit. These calculations are done for the oscillation frequency dependence on the electron cyclotron frequency. It is shown that, the relativistic properties of the particle lead to increasing the growth rate of the instability. On the other hand the collision effects and background magnetic field try to decrease the growth rate by decreasing the temperature anisotropy and restricting the particles movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号