首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C.T. Ni  K.Z. Fung 《Solid State Ionics》2009,180(11-13):900-903
Deposition of LiCoO2 thin film using chitosan-added precursor solution was found to be a cost-effective way to fabricate cathode for Li-ion thin film batteries. The structures and electrochemical performance of such LiCoO2 cathode were characterized by using an X-ray diffracotmeter (XRD), FTIR and charge–discharge tests. After annealing at ca. 500 °C, the results of XRD showed that the LiCoO2 gel started to crystallize and showed hexagonal phase with a space group of R3?m. The enhanced stability of the precursor solution by the addition of chitosan is attributed to the complexation between metal ions and the ?NH2 groups of chitosan.The electrochemical behaviour for the deposited films calcined at 700 °C for 4 h was also characterized by charge–discharge test. The result revealed that the film deposited from chitosan-containing precursor solution possesses an initial discharge capacity of 129 mAh g? 1.  相似文献   

2.
S. B. Tang  L. Lu  M. O. Lai 《哲学杂志》2013,93(24):2831-2842
A highly (003)-oriented pure LiCoO2 thin film cathode, without Co3O4 impurities, was grown on a stainless steel substrate by pulsed laser deposition and characterized by electrochemical testing, scanning electron microscopy (SEM), ex situ X-ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS). The initial reversible discharge capacity of the LiCoO2 thin film cathode reached 52.5?μAh/cm2µm and capacity loss was about 0.18% per cycle at a current density of 12.74?μA/cm2. The chemical diffusion coefficient of the Li+ ion was estimated to be about 4.7?×?10?11?cm2/s from cyclic voltammetric (CV) scans. Ex situ XRD revealed that the spacing of crystalline planes expanded about 0.09?Å when charged to 4.2?V, corresponding to Li0.5CoO2, lower than the value for composite powder LiCoO2 electrodes. XPS results showed that the number of low-coordinated oxygen ions increased relative to the removal of Li+ ions.  相似文献   

3.
M. Ganesan 《Ionics》2009,15(5):609-614
The lithiated transition metal oxide has been used as the cathode materials for lithium ion rechargeable batteries. Among the various cathode materials, LiCoO2 has been widely used. There are lot of reports on the substituted LiCoO2 replacing small amount of Cobalt with other transition and nontransitional metals. Here, we focus on to a tetravalent transition metal atom such as titanium, as an addition in LiCoO2 and studied its performance. The titled cathode material was synthesized by solid-state reaction method. Thermogravimetric/differential thermal analysis, X-ray diffraction, X-ray fluorescence, scanning electron microscopy, and particle size analysis were carried out to assess the effect of addition of titanium on LiCoO2. Electrochemical studies were carried out by cyclic voltammetry and life cycle analyzer.  相似文献   

4.
Herein, we present the use of lithium tetrafluoroborate (LiBF4) as an electrolyte salt for wide-temperature electrolytes in lithium-ion batteries. The research focused on the application of blend salts to exhibit their synergistic effect especially in a wide temperature range. In the study, LiCoO2 was employed as the cathode material; LiBF4 and lithium difluoro(oxalate)borate (LiODFB) were added to an electrolyte consisting of ethylene carbonate (EC), propylene carbonate (PC), and ethyl methyl carbonate (EMC). The electrochemical performance of the resulting electrolyte was evaluated through various analytical techniques. Analysis of the electrical conductivity showed the relationship among solution conductivity, the electrolyte composition, and temperature. Cyclic voltammetry (CV), charge-discharge cycling, and AC impedance measurements were used to investigate the capacity and cycling stability of the LiCoO2 cathode in different electrolyte systems and at different temperatures. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were applied to analyze the surface properties of the LiCoO2 cathode after cycling. The results indicated that the addition of a small amount of LiODFB into the LiBF4-based electrolyte system (LiBF4/LiODFB of 8:2) may enhance the electrochemical performance of the LiCoO2 cell over a relatively wide temperature range and improve the cyclability of the LiCoO2 cell at 60 °C.  相似文献   

5.
Films of LiCoO2 are prepared on metallized silicon substrates using RF-magnetron sputtering technique. The microstructural properties of the films are investigated by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The films deposited at a substrate temperature of 250 °C with subsequent annealing at 650 °C exhibited hexagonal layered structure with R $ \overline 3 $ m symmetry. The kinetics of lithium ions in LiCoO2 film cathode host matrix and its cycleability are studied in aqueous Pt//LiCoO2 and nonaqueous Li//LiCoO2 cell. Both the electrochemical cells at same current density of 50 μA cm?2 delivered the same initial discharge capacity of about 60 μA h?cm?2 μm?1 with a chemical diffusion coefficient of ca. 10?11 cm2 s?1 for Li+ ions. The capacity fade rates for the Pt//LiCoO2 and Li//LiCoO2 cells, in average are 3.0 and 0.15 % per cycle, respectively, for the first 20 cycles. The Pt//LiCoO2 cell is found to be advantageous for small number of cycles and is cost effective than the Li//LiCoO2 cell.  相似文献   

6.
Binary conductive additives (BCA), formed by sonication of mesoporous carbon (MC) and acetylene black (AB), were used as conductive additives to improve the electrochemical performance of a LiCoO2 composite cathode. The electrochemical performance of the LiCoO2 composite cathode dispersed with BCA was investigated. The results showed that the electrochemical performance (including the discharge capacity, the discharge voltage and the total internal resistance) of a BCA loaded LiCoO2 composite cathode was better than that of a cathode loaded with AB. The possible mechanism is that the MC in BCA can adsorb and retain electrolyte solution, which allows an intimate contact between the lithium ions and the cathode active material LiCoO2 due to its large mesopore specific surface area. A simplified model was also proposed.  相似文献   

7.
A series of divalent non-transition metal, especially Mg doped LiCoO2 solid solutions with the general formula LiMgxCo1−xO2 (x=0.00–0.20) was synthesized by the solid state fusion method trying to reduce the cost and toxicity, and to improve the overall electrochemical cell performance. All synthesized cathodes were characterized by XRD, TG/DTA, FTIR, SEM, particle size analysis and charge-discharge performances at constant current of 0.05 mA. All compounds were found to possess phase purity, have better crystallinity, preferred surface morphology and size-reduced particles of uniform distribution. The incorporation of the larger Mg2+ ion compared to the Li+ ion up to 0.20 mol-% leads to an increase in the unit cell volume, which restricts the concentration of the Co-O bond upon delithiation. Mg2+, commonly known for its structure stabilizing effect, has been found to have only a small effect on the crystal lattice of LiCoO2, especially at higher substituent levels, mainly due to the migration of Mg2+ ions from slab to inter-slab structure. The effect of Mg2+ on the modification of the capacity and structural stability compared to the unmodified LiCoO2 cathode is discussed in detail.  相似文献   

8.
A mechano-thermal coating method was adopted for obtaining LiCoO2 coated particles with pre-formed pseudo-boehmite nanoparticulate, followed by calcination at 723 K for 10 h. From X-ray diffraction (XRD) analysis it was seen that the coated cathode materials did not show any extraneous phase peaks corresponding to the pseudo-boehmite and the crystal structure, α-NaFeO2, remained the same as pristine LiCoO2. Scanning electron micrograph (SEM) of the coated samples showed that above the 1.0 wt.% coating level, the excess pseudo-boehmite got glued to the coated cathode particles as spherules. TEM images showed that the Al2O3 particles derived from pseudo-boehmite formed ∼20 nm thickness coating layer on the LiCoO2 particles. The XPS/ESCA results revealed that the presence of two different O 1s corresponds to the surface coated Al2O3 and the core material. The electrochemical performance of the coated materials by a cycling study suggest that 1.0 wt.% coated Al2O3 derived from pseudo-boehmite on the two commercial LiCoO2 samples improved cycle stability by a factor of five and 11 times over the pristine LiCoO2 cathode material. Cyclic voltammetry revealed that the hexagonal-monoclinic-hexagonal phase transformations were retained for the coated cathode materials upon continuous cycling.  相似文献   

9.
LiCoO2 sample prepared by high-temperature solid state calcination shows a typical hexagonal structure with a single phase and fine particle size distribution. The high-voltage electrolyte with additive fluoroethylene carbonate (FEC) has been used. Electrochemical results show that the initial discharge capacities of the prepared LiCoO2 cathode are 157.7, 169.5, 191.0, and 217.5 mAh g?1 in the voltage ranges of 3.0–4.3, 3.0–4.4, 3.0–4.5, and 3.0–4.6 V, respectively. The capacity increases, while the initial coulombic efficiency and capacity retention decrease with increasing the charge cutoff voltage. The capacity retention is only 10.4 % after 200 cycles at 1C rate in the voltage range of 3.0–4.6 V. X-ray diffraction measurements confirm structural changes of the layered material in the different voltage ranges. A phase transition from the O3 to the H1-3 phase can be observed when LiCoO2 is charged above 4.5 V. The AC impedance analysis indicates that the resistances (R (sf+b), R ct) of the prepared LiCoO2 rapidly increase when the cell is charged to higher voltage. The amount of dissolved Co into the electrolyte also greatly increases with increasing the charge cutoff voltage.  相似文献   

10.
High molecular weight polymer poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP), ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIMFSI), and salt lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-based free-standing and conducting ionic liquid-based gel polymer electrolytes (ILGPE) have been prepared by solution cast method. Thermal, electrical, and electrochemical properties of 80 wt% IL containing gel polymer electrolyte (GPE) are investigated by thermogravimetric (TGA), impedance spectroscopy, linear sweep voltammetry (LSV), and cyclic voltammetry (CV). The 80 wt% IL containing GPE shows good thermal stability (~?200 °C), ionic conductivity (6.42?×?10?4 S cm?1), lithium ion conductivity (1.40?×?10?4 S cm?1 at 30 °C), and wide electrochemical stability window (~?4.10 V versus Li/Li+ at 30 °C). Furthermore, the surface of LiFePO4 cathode material was modified by graphene oxide, with smooth and uniform coating layer, as confirmed by scanning electron microscopy (SEM), and with element content, as confirmed by energy dispersive X-ray (EDX) spectrum. The graphene oxide-coated LiFePO4 cathode shows improved electrochemical performance with a good charge-discharge capacity and cyclic stability up to 50 cycles at 1C rate, as compared with the without coated LiFePO4. At 30 °C, the discharge capacity reaches a maximum value of 104.50 and 95.0 mAh g?1 for graphene oxide-coated LiFePO4 and without coated LiFePO4 at 1C rate respectively. These results indicated improved electrochemical performance of pristine LiFePO4 cathode after coating with graphene oxide.  相似文献   

11.
LiNi1/3Co1/3Mn1/3O2 (LNMCO) powders were formed by a two-step synthesis including preparation of an oxalate precursor by ??chimie douce?? followed by a solid-state reaction with lithium hydroxide. The product was characterized by TG-DTA, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), Raman spectroscopy, electron spin resonance (ESR), and SQUID magnetometry. XRD data revealed well-crystallized layered LNMCO with ??-NaFeO2-type structure (R-3?m space group). Morphology studied by SEM and TEM shows submicronic particles of 400?C800?nm with a tendency to agglomerate. The local structure investigated by vibrational spectroscopy (FTIR, Raman), ESR, and SQUID measurements confirms the well-crystallized lattice with a cation disorder of 2.6% Ni2+ ions in Li(3b) sites. Electrochemical tests were carried out in the potential range 2.5?C4.5?V vs. lithium metal on samples heated at 900?°C for 12?h. Initial discharge capacity is 154 mAh/g at C/5, while a capacity of 82 mAh/g is still delivered at 10 C by the two-step synthesized LiNi1/3Co1/3Mn1/3O2 as cathode material.  相似文献   

12.
The oil in water (o/w) emulsions were prepared using aniline dissolved in toluene and LiCoO2 particles as stabilizers (Pickering emulsions). Pickering emulsions are stabilized by adsorbed solid particles instead of emulsifier molecules. The mean droplet diameter of emulsions was controlled by the mass ratio M (oil)/M (solid particles). The emulsions showed great stability during 3 days. The composite materials containing LiCoO2 and the conductive polymer polyaniline (PANI) have been prepared by means of polymerization of aniline emulsion stabilized by LiCoO2 particles. The composite materials were characterized by nanosphere and nanofiber-like structures. The nanofiber-like morphology of the powdered material was distinctly different of the morphologies of the parent materials. The electrochemical reactivity of PANI/LiCoO2 composites as positive electrode in a lithium battery was examined during lithium ion deinsertion and insertion by galvanostatic charge–discharge testing; PANI/LiCoO2 (1:4) composite materials exhibited the best electrochemical performance by increasing the reaction reversibility and capacity compared to that of the pristine LiCoO2 cathode. The first discharge capacity of PANI/LiCoO2 (1:4) was 167 mAh/g, while that of LiCoO2 was136 mAh/g.  相似文献   

13.
14.
LiCoO2-based cathode does still have a powerful competition in high-end mobile electronics due to its relatively high true density (about 5.2 g/cm3). When the operation potential range is extended, the improvement in its cycle stability has attracted more attention. The extension of its operation potential can be realized by partial replacement of Co by Ni and Mn or by surface modification. However, Ni and Mn replacing partial Co results in decreased true density; for example, the true density of LiNi0.5Mn0.3Co0.2O2 is about 4.6 g/cm3. In this case, the increase in its practical energy density is impossible. As a result, the surface modification technology becomes very important to extend its operation potential range. In this article, an Al2O3-coated LiCoO2 cathode was synthesized. X-ray diffraction test did not show any impurity. Scanning electron spectroscopy measurements showed that the basic microstructure of pristine LiCoO2 grain is sustained after coating Al2O3. The surface characteristic of pure and Al2O3-coated LiCoO2 was also analyzed using an X-ray photoelectron spectroscopy (XPS) technique. Unusual XPS peaks of O 1s, Al 2p, and Co 2p binding energy were found and may be caused by the possible H existence in crystal structure. The electrochemical behavior was systematically investigated, and the cathode was cycled at different charge cutoff voltages (4.30~4.60 V). The charge-discharge and cyclic voltammetry measurements showed an obviously improved cyclic performance after coating Al2O3. The electrocatalytic activity is not clearly changed before and after coating Al2O3. From our systematical investigation, it could be concluded that the Al2O3-coated LiCoO2 cathode is suitable for practical application in the potential range of 3.70~4.50 V vs. Li/Li+.  相似文献   

15.
Composite cathode materials produced by integrating isostructural (2D-layered) compounds LiNiO2, LiCoO2, and Li2MnO3 (Li(Li1/3Mn2/3)O2) have been investigated utilizing a compositional phase diagram. The samples were characterized by multiple techniques to establish structure–property relationships. Specifically, for structural characterization, powder X-ray diffraction, scanning electron microscopy, thermo-gravimetric analysis, and X-ray photoelectron spectroscopy were carried out. For properties, electrochemical characterization was carried out. The best composition showed a discharge capacity of 244 mAh/g (C/15 rate) in the testing range of 4.6–2 V, with good coulombic efficiency and cyclability.  相似文献   

16.
The compatibility of the solid electrolyte Li1.5Al0.5Ti1.5(PO4)3 (LATP) with the cathode materials LiCoO2, LiMn2O4, LiCoPO4, LiFePO4, and LiMn0.5Fe0.5PO4 was investigated in a co-sintering study. Mixtures of LATP and the different cathode materials were sintered at various temperatures and subsequently analyzed by thermal analysis, X-ray diffraction, and electron microscopy. Oxide cathode materials display a rapid decomposition reaction with the electrolyte material even at temperatures as low as 500 °C, while olivine cathode materials are much more stable. The oxide cathode materials tend to decompose to lithium-free compounds, leaving lithium to form Li3PO4 and other metal phosphates. In contrast, the olivine cathode materials decompose to mixed phosphates, which can, in part, still be electrochemically active. Among the olivine cathode materials, LiFePO4 demonstrated the most promising results. No secondary phases were detected by X-ray diffraction after sintering a LATP/LiFePO4 mixture at temperatures as high as 700 °C. Electron microscopy revealed a small secondary phase probably consisting of Li2FeTi(PO4)3, which is ionically conductive and should be electrochemically active as well.  相似文献   

17.
Novel poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP))-based composite polymer electrolyte (CPE) membranes doped with different contents of nano-SiO2 using urea as a pore-forming agent were prepared by phase inversion method, and the desired CPEs were obtained by being immersed into 1.0 M LiPF6-EC/DMC/EMC electrolytes for 0.5 h. The physicochemical properties of the CPEs were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). The results show that the CPEs doped with 10 % nano-SiO2 exhibit the best performance, in which the SEM images of the as-prepared polymer membranes present homogeneous surface and abundant micropores; the uptake ratio is up to 107.4 %; EIS and LSV analysis also show that the ionic conductivity at room temperature and electrochemical stability window of the modified membrane can reach 3.652 mS cm?1 and 5.0 V, respectively; the interfacial resistance R i is 380 Ω cm?2 in the first day,then increases rapidly to a stable value about 500 Ω cm?2 in a 5-day storage at room temperature. The Li/As-fabricated CPEs/LiCoO2 cell also shows excellent charge-discharge performance, which suggests that it can be a potential electrolyte for the lithium-ion battery.  相似文献   

18.
LiMn2O4 has been considered a promising cathode material for lithium-ion batteries in electric vehicles. However, there are still a number of problems of severe capacity fading before any materials modifications. Among all doped LiMn2O4, spinel LiNi0.5Mn1.5O4 material is seen as a potential cathode material for use in electric vehicles and energy storage systems in the future because of its high working potential (4.7 V), high energy density (the energy density of LiNi0.5Mn1.5O4 is 20% higher than that of LiCoO2), acceptable stability, and good cycling performance. In the presented paper, the structure and electrochemical performance of doped LiNi0.5Mn1.5O4 are reviewed. The rate capability, rate performance and cyclic life of various doped LiNi0.5Mn1.5O4 materials are described. This review also focuses on the present status of doped LiNi0.5Mn1.5O4, then on its near future developments.  相似文献   

19.
《Solid State Ionics》2006,177(19-25):1893-1896
The search for a NiO-based cathode for molten carbonate fuel cell has been directed towards solid solutions containing LiFeO2 and LiCoO2 in addition to nickel oxide [A. Wijayasinghe, B. Bergman, C. Lagergren, Electrochim. Acta 49 (2004) 4709.]. NiO and LiFeO2 are fully soluble in one another, while ternary solid solutions have been previously obtained only for small (< 18%) and high (> 90%) LiCoO2 molar contents. The goal of this work is to identify and characterize the compositions with the most promising electrical conductivity, which may be used as cathode materials. We present data relative to compositions having a constant NiO/LiFeO2 molar ratio of 3:1 and a LiCoO2 content from 5 to 30 mol%.  相似文献   

20.
A layered perovskite GdBaCuFeO5+x (GBCuF) was developed as a cathode material for intermediate-temperature solid oxide fuel cells based on a proton-conducting electrolyte of stable BaZr0.1Ce0.7Y0.2O3?δ (BZCY). The X-ray diffraction results showed that GBCuF was chemically compatible with BZCY after co-fired at 1,000 °C for 10 h. The thermal expansion coefficient of GBCuF, which showed a reasonably reduced value (15.1?×?10?6 K?1), was much closer to that of BZCY than the cobalt-containing conductor. The button cells of Ni–BZCY/BZCY/GBCuF were fabricated and tested from 500 to 700 °C with humidified H2 (~3 % H2O) as a fuel and ambient oxygen as the oxidant. A high open-circuit potential of 1.04 V, maximum power density of 414 mW cm?2, and a low electrode polarization resistance of 0.21 Ω cm2 were achieved at 700 °C, with calculated activation energy (E a) of 128 kJ mol?1 for the GBCuF cathode. The experimental results indicated that the layered perovskite GBCuF is a good candidate for cathode material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号