首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
Two palladium(II) complexes with imidazole derivative ligands have been synthesized. The molecular structures of the complexes were determined by X-ray crystallography and their spectroscopic properties were studied. Based on the crystal structures, computational investigations were carried out to determine the electronic structures of the complexes. The electronic spectra were calculated with use of time-dependent DFT method, and the transitions were correlated with the molecular orbitals of the complexes. The emission of the complex with 1-methylimidazole was examined.  相似文献   

2.
A heterocyclic hydrazone ligand, pyridine-2-carboxaldehyde-2-pyridylhydrazone, HL, 1, was investigated as a new chromogenic agent for selective detection of Pd2+. The ligand HL, 1, undergoes 1:1 complexation with Pd2+ and Cu2+ to form complexes [Pd(L)Cl], 1a and [Cu(HL)Cl2], 1b respectively. The complex 1a gives a characteristic absorption peak at 536 nm with distinct reddish-pink coloration. The change in color can easily be distinguished from other metal complexes by the naked eye. No obvious interference was observed in the presence of other metal ions (Na+, K+, Mg2+, Ca2+, Al3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Sn2+, Hg2+, Pb2+). The association constants, Kass (UV–Vis), were found to be 5.52 ± 0.004 × 104 for 1a and 4.94 ± 0.006 × 104 for 1b at 298 K. On excitation at 295 nm, the ligand HL, 1 strongly emits at 372 nm due to an intraligand 1(π–π) transition. Upon complexation the emission peaks are blue shifted (λex 295 nm, λem 358 nm for 1a and λex 295 nm, λem 367 nm for 1b) along with a quenching (F/F0 0.32 for 1a and 0.88 for 1b) in the emission intensity. DFT and TDDFT calculations were highly consistent with the spectroscopic behavior of the ligand and complexes. The molecular structure of the complex 1b has been determined by single crystal X-ray diffraction studies.  相似文献   

3.
Summary The electronic absorption spectra of the complexes M(L)Cl2 and M(L)2Cl2 [M=NiII or PdII; L=thiosemicarbazide (tsc), 1-phenylthiosemicarbazide (1-phtsc), or 4-phenylthiosemicarbazide (4-phtsc)] were investigated in a number of solvents. The complexes Ni(tsc)Cl2, Ni(tsc)2Cl2, Ni(4-phtsc)Cl2 and Ni(4-phtsc)2Cl2 exist in a distorted Oh geometry when dissolved in any of the solvents used. On the other hand, the complex Ni(1-phtsc)2Cl2, although weakly paramagnetic, proved to be planar. Theoretical and experimental results proved that the complex has neither Oh nor Td geometry. Molecular orbital calculations were performed on some selected complex ions assuming a local point group symmetry of D2h.  相似文献   

4.
The reactions of N-alkyliminodiacetamide derivatives, namely N-ethyliminodiacetamide (CH3CH2N(CH2CONH2)2; Etimda) and N-isopropyliminodiacetamide (CH3)2CHN(CH2CONH2)2; i-Primda), with sodium tetrachloropalladate(II) in aqueous solutions were investigated. Three new palladium(II) complexes, [Pd(Etimda?H)2]?2H2O (1), [Pd(i-Primda?H)2]?2H2O (2) and [PdCl2(i-Primda)] (3), were obtained and characterized by X-ray structural analysis, infrared spectroscopy and thermal analysis (TGA). The square planar coordination environments around the palladium(II) ions in complexes 1 and 2 consist of two N,N′-bidentate N-alkyliminodiacetamidato ligands, with imino N atoms in trans-position. The complex 3 also exhibits a square planar coordination environment around Pd(II), but with two chloride ions and one neutral N-isopropyliminodiacetamide ligand bound in an N,O′-bidentate coordination mode. The described coordination modes, as well as the presence of deprotonated amide groups in ligands in 1 and 2, are found for the first time in palladium(II) complexes with iminodiacetamide type ligands. The molecular geometries and infrared spectra of these three complexes were also modelled using DFT calculations, at the BP86-D3/def2-TZVPP/PCM level of theory. The RMSD values suggest a good agreement of the calculated and experimental geometries. A QTAIM analysis suggests a qualitative correlation between bond lengths and energy densities, also supported by an NBO analysis. The dimer interaction energy between complex units was estimated at about ?15 kcal/mol for all complexes.  相似文献   

5.
Palladium(II) halide complexes with N-ethylimidazole (N-EtIm) and N- propylimidazole (N-PropIm) with general formulae Pd(L)2X2 and Pd(L)4X2 (X = Cl, Br, I) were prepared and characterized by spectroscopic methods and conductivity measurements. These complexes are diamagnetic and have square planar stereochemistry. The Pd(L2)X2 derivatives, are non-conductors, and have trans-structures except for the cis-Pd(N-EtIm)2Br2. The biological activity of water soluble Pd(II) compounds is also reported.  相似文献   

6.
The pyrazole ligand 3,5-dimethyl-4-iodopyrazole (HdmIPz) has been used to obtain a series of palladium(II) complexes (14) of the type [PdX2(HdmIPz)2] {X = Cl (1); Br (2); I (3); SCN (4)}. All compounds have been isolated, purified, and characterized by means of elemental analysis, IR spectroscopy, 1H and 13C{1H}-NMR experiments, differential thermal analysis (DTA), and thermogravimetry (TG). The TG/DTA curves showed that the compounds released ligands in the temperature range 137–605 °C, yielding metallic palladium as final residue. The complexes and the ligand together with cisplatin have been tested in vitro by MTT assay for their cytotoxicity against two murine cancer cell lines: mammary adenocarcinoma (LM3) and lung adenocarcinoma (LP07).  相似文献   

7.
This study describes the synthesis, IR, 1H, and 13C{1H} NMR spectroscopic as well the thermal characterization of the new palladium(II) pyrazolyl complexes [PdCl2(HmPz)2] 1, [PdBr2(HmPz)2] 2, [PdI2(HmPz)2] 3, [Pd(SCN)2(HmPz)2] 4 {HmPz = 4-methylpyrazole}. The residues of the thermal decomposition were identified as Pd0 by X-ray powder diffraction. From the initial decomposition temperatures, the thermal stability of the complexes can be ordered in the sequence: 1 > 2 > 4 ≈ 3. The cytotoxic activities of the complexes and the ligand were investigated against two murine cancer cell lines: mammary adenocarcinoma (LM3) and lung adenocarcinoma (LP07) and compared to cisplatin under the same experimental conditions.  相似文献   

8.
Abstract  Two new nickel(II) complexes, namely [Ni(BPSE)](BF4) 1, and [Ni (5-BST)CH3OH]ClO4 2 [BPSE = 2-benzoylpyridinesalicylidene ethylenediamine, 5-BST = 5-bromosalicylidene-tris(2-aminoethyl)amine] have been synthesized and characterized using various physico-chemical methods. The magnetic and spectroscopic data indicate a distorted square planar geometry for complex 1, while complex 2 is assigned a distorted octahedral geometry. Complex 1 crystallized in the triclinic space group P-1. Complex 2 adopts an octahedral geometry with space group symmetry P 21/n. The superoxide dismutase activity of these complexes has been measured. Graphical Abstract  This paper describes three new nickel (II) complexes viz; [Ni(BPSE)](BF4) 1, [Ni(BSE)] 2 and [Ni (5-BST) CH3OH] ClO4 3 [BPSE = 2-benzoylpyridine salicyledene-ethylenediamine, BSE = bis(salicylaldehyde) ethylenediamine, 5-BST = 5-bromosalicyledene-tris(2-amino ethyl) amine]. The magnetic and spectroscopic data indicate a distorted square planar geometry for complex 1 and 2, while the comlplex 3 is assigned a distorted octahedral geometry. Superoxide dismutase activity of these complexes have also been measured. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.
We wish to report the synthesis, crystal structures, spectroscopic and electrochemical properties of several new Pt(II) heteroleptic complexes containing the thiacrown, 9S3 (1,4,7-trithiacyclononane) with a series of substituted phenanthroline ligands and related diimine systems. These five ligands are 5,6-dimethyl-1,10-phenanthroline(5,6-Me2-phen), 4,7-dimethyl-1,10-phenanthroline(4,7-Me2-phen), 4,7-diphenyl-1,10-phenanthroline(4,7-Ph2-phen), 2,2′-bipyrimidine(bpm), and pyrazino[2,3-f]quinoxaline or 1,4,5,8-tetraazaphenanthrene(tap). All complexes have the general formula [Pt(9S3)(N2)](PF6)2 (N2 = diimine ligand) and form similar structures in which the Pt(II) center is surrounded by a cis arrangement of the two N donors from the diimine chelate and two sulfur atoms from the 9S3 ligand. The third 9S3 sulfur in each structure forms a longer interaction with the platinum resulting in an elongated square pyramidal structure, and this distance is sensitive to the identity of the diimine ligand. In addition, we report the synthesis, structural, electrochemical, and spectroscopic properties of related Pd(II) 9S3 complex with tap. The 195Pt NMR chemical shifts for the six Pt(II) complexes show a value near −3290 ppm, consistent with a cis-PtS2N2 coordination sphere although more electron-withdrawing ligands such as tap show resonances shifted by almost 100 ppm downfield. The physicochemical properties of the complexes generally follow the electron-donating or withdrawing properties of the phenanthroline substituents.  相似文献   

11.
Mononuclear palladium(II) complexes containing both pyrazole-type ligands and thiocyanate, of general formula [Pd(SCN)2(L)2] {L = pyrazole (HPz) and 1-phenyl-3-methylpyrazole (phmPz)} have been prepared and characterized by elemental analysis, i.r. and n.m.r. spectroscopy and by single crystal X-ray diffraction methods. The Pd atom in these structures lies on the crystallographic inversion center; in a square-planar coordination geometry made by two sulfur and two nitrogen atoms of the ligands, both in trans positions.  相似文献   

12.
A series of cobalt(II) and nickel(II) complexes were synthesized using succinonitrile and its [1,4-13C2], [15N2]-, [2,2,3,3-2H4]- and [1,4-13C,-2,2,3,3-2H4]- isotopomers as bridging ligands. Spectroscopic studies, as well as X-ray powder diffraction profiles, were used to identify the nature of the octahedral coordination sphere of the central metal ions and to assign the vibrational spectra in full detail. The succinonitrile ligands were found to be in trans configuration in all the complexes studied and to be coordinated via the lone pairs of their nitrile nitrogens. The rule of mutual exclusion was found to be fulfilled for the succinonitrile ligands under the Ci symmetry of the complexes and the vibrations of the succinonitrile ligands were found to appear in either the infrared or the Raman spectra. All succinonitrile isotopomers exhibited blue-shifts of 43-71 cm(-1) upon coordination, while most of the other vibrations remained unchanged or underwent small shifts of only a few wavenumbers. The mass differences of the succinonitrile isotopomers were found to shift mainly the vibrations of the respective affected part of the molecules in comparison with the normal succinonitrile. The exchange of the halides, which are coordinated to the central metal ion, was also found to influence the vibrations of the associated water molecules and we could identify vibrational bands arising due to the H-bond interaction between the halides and the water molecules. Finally, we showed that all complexes under consideration have, spectroscopically, the same symmetry.  相似文献   

13.
Two new N-salicylidene-N'-aroylhydrazines ligands have been prepared: N-4-diethylaminosalicylidene-N'-4-nitrobenzoyl-hydrazine (L(1)) and N-4-diethylaminosalicylidene-N'-4-(4-nitrophenylethylidene)-benzoyl-hydrazine (L(2)). The ligands are properly functionalized with strong electron donor-acceptor groups and are of potential interest in second-order nonlinear optics (NLO). Dimeric copper(II) and palladium(II) complexes with L(1) and L(2) have been prepared, and, starting from these, mononuclear acentric adducts with pyridine as a further ligand have been prepared and characterized. The X-ray structures of three adducts are also reported. The NLO activity of the adducts has been determined by EFISH measurements giving mubeta values up to 1500 x 10(-48) esu for an incident wavelength of 1.907 microm.  相似文献   

14.
Su  Biyun  Liu  Yiting  Yan  Tingyu  Wu  Jindi  Han  Qiaoqiao  Wang  Li  Ran  Liangtao  Pan  Dandan 《Transition Metal Chemistry》2021,46(8):601-611
Transition Metal Chemistry - In recent years, a variety of novel late transition metal catalysts have been used for polymerization of methyl methacrylate (MMA); in order to study the effects of...  相似文献   

15.
The reactions of [PdCl2(NCPh)2] in a 1:1 ratio with the bis(amidopyridine) ligands LL=C6H3(5-R)(1,3-CONH-3-C5H4N)2 with R=H (1a) or R=t-Bu (1b) give the corresponding neutral dipalladium(II) macrocycles trans,trans-[Pd2Cl4(mu-LL)2], 2a and 2b, which crystallize from dimethylformamide with one or two solvent molecules as macrocycle guests. The reaction of [PdCl2(NCPh)2] with LL in a 1:2 ratio gave the cationic lantern complex [Pd2(mu-LL)4]Cl4, 3c (LL=1b), and the reaction in the presence of AgO2CCF3 gave the corresponding trifluoroacetate salts [Pd2(mu-LL)4](CF3CO2)4, 3a (LL=1a) and 3b (LL=1b). These lantern complexes exhibit a remarkable host-guest chemistry, as they can encapsulate cations, anions, and water molecules by interaction of the guest with either the electrophilic NH or the nucleophilic C=O substituents of the amide groups, which can be directed toward the center of the lantern through easy conformational change. The structures of several of these host-guest complexes were determined, and it was found that the cavity size and shape vary according to the ligand conformation, with Pd...Pd separations in the range from 9.45 to 11.95 A. Supramolecular ordering of the lanterns was observed in the solid state, through either hydrogen bonding or secondary bonding to the cationic palladium(II) centers. The selective inclusion by the lantern complexes of alkali metal ions in the sequence Na+ > K+ > Li+ was observed by ESI-MS.  相似文献   

16.
Summary Complexes of nickel(II), palladium(II) and platinum(II) with the heterocyclic ligands tetrahydroquinoline dithiocarbamate and tetrahydroisoquinoline dithiocarbamate were prepared and characterized. All the complexes have the empirical formula ML2 and i.r. and n.m.r. show that the ligands are isobidentate bonding through the dithiocarbamate sulphurs. The MS4 groups seem to have a square planar arrangement leaving scope for secondary interactions.Author to whom all correspondence should be directed.  相似文献   

17.
The complexes formed between palladium (II) and a polymeric ligand derived from L -asparagine, poly(N-methacryloyl-L -asparagine) (PNMAsn) have been investigated by electronic absorption and circular dichroism. N-isobutyroyl-L -asparagine (NIBAsn) was also synthesized and studied with the purpose of comparison with its polymeric analog. NIBAsn gives two complexes: at low pH, an optically active complex between one carboxylate and one secondary amide nitrogen (so-called 1N complex), and at higher pH, a 2N complex involving the primary and secondary amide group. This complex is also optically active. PNMAsn gives at low pH a 1N complex similar to that of NIBAsn, but at higher pH the 2N complex is formed between two carboxylate groups and two secondary amide groups of two different side chains of the polymer. At very high pH this 2N complex is hydrolyzed, i.e., the carboxylate-palladium bonds are replaced by hydroxyle-palladium bonds, and the complex becomes optically inactive.  相似文献   

18.
The synthesis, characterization and thermal behavior of new monomeric allylpalladium (II) complexes with dichalcogenoamidodiphosphinate anions are reported. The complexes [R = H, R′ = Pri, E = S (1a); R = H, R′ = Pri, E = Se (1b); R = H, R′ = Ph, E = S (1c); R = H, R′ = Ph, E = Se (1d); R = Me, R′ = Pri, E = S (2a); R = Me, R′ = Pri, E = Se (2b); R = Me, R′ = Ph, E = S (2c); R = Me, R′ = Ph, E = Se (2d)] have been prepared by room temperature reaction of [Pd(η3-CH2C(R)CH2)(acac)] (acac = acetylacetonate) with dichalcogenoimidodiphosphinic acids in acetonitrile solution. The complexes have been characterized by multinuclear NMR (1H, 13C{1H}, 31P{1H}, 77Se{1H}), FT-IR and elemental analyses. The crystal structures of complexes 1a, 1d and 2d have been reported and they consist of a six-membered PdE2P2N ring (E = S for 1a and Se for 1d and 2d) and an allyl group, C3H4R(R = H for 1a and 1d and Me for 2d). Thermogravimetric studies have been carried out for few representative complexes. The complexes thermally decompose in argon atmosphere to leave a residue of palladium chalcogenides, which have been characterized by PXRD, SEM and EDS.  相似文献   

19.
The reactions of [Tl(2)[S(2)C=C[C(O)Me](2)]](n) with [MCl(2)(NCPh)(2)] and CNR (1:1:2) give complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)(2)] [R = (t)Bu, M = Pd (1a), Pt (1b); R = C(6)H(3)Me(2)-2,6 (Xy), M = Pd (2a), Pt (2b)]. Compound 1b reacts with AgClO(4) (1:1) to give [[Pt(CN(t)Bu)(2)](2)Ag(2)[mu(2),eta(2)-(S,S')-[S(2)C=C[C(O)Me](2)](2)]](ClO(4))(2) (3). The reactions of 1 or 2 with diethylamine give mixed isocyanide carbene complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)[C(NEt(2))(NHR)]] [R = (t)Bu, M = Pd (4a), Pt (4b); R = Xy, M = Pd (5a), Pt (5b)] regardless of the molar ratio of the reagents. The same complexes react with an excess of ammonia to give [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)](CN(t)Bu)[C(NH(2))(NH(t)Bu)]] [M = Pd (6a), Pt (6b)] or [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)][C(NH(2))(NHXy)](2)] [M = Pd (7a), Pt (7b)] probably depending on steric factors. The crystal structures of 2b, 4a, and 4b have been determined. Compounds 4a and 4b are isostructural. They all display distorted square planar metal environments and chelating planar E,Z-2,2-diacetyl-1,1-ethylenedithiolato ligands that coordinate through the sulfur atoms.  相似文献   

20.
A combined experimental study and density functional theory calculations of fac‐[MnBr (CO)3L] complexes (L = 2‐(2′‐pyridyl)benzimidazole ligand, furnished with either morpholine (Lmorph) or phthalimido (Lphth) side‐chain) were performed using different spectral and analytical tools. The synthesized complexes released carbon monoxide upon the exposure to LED source light at 468 nm. Illumination of fac‐[MnBr (CO)3L] (10 μM) in the myoglobin solution (Mb) produced about 25 μM MbCO. The plateau of the CO release process is attained within 25 min. With the aid of time‐dependent density functional theory calculations, the observed lowest energy absorption transition at ~ 400 nm has a ground‐state composed of d (Mn)/π (pyridyl) and excited‐state of ligand π*‐orbitals forming MLCT/π‐π*. Natural population analyses of fac‐[MnBr (CO)3L] were carried out to get information about the strength of Mn–CO bonds, electronic arrangment and natural charge of manganese ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号