首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Abstract  

Reactions of the thienyl side chain functionalized cyclopentadienyls (C4H3S)C(R1R2)C5H5[R1, R2 = CH3 (1); R1, R2 = (CH2)5 (2); R1, R2 = C2H5 (3)] with Ru3(CO)12 in refluxing xylene gave the corresponding cyclopentadienyl diruthenium carbonyl complexes [(η 5-C4H3S)CR1R2(C5H4)Ru(CO)2]2 (R1, R2 = CH3 (4); R1, R2 = (CH2)5 (5); R1, R2 = C2H5 (6)), which were characterized by elemental analysis, IR and 1H NMR spectra. The molecular structures of 4, 5 and 6 were determined by single crystal X-ray diffraction.  相似文献   

2.
Reaction of the dinuclear complex [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}Cl]2 (1) with ligands (L = 4-picoline, sym-collidine) gave the six-membered palladacycles [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}Cl(L)] (2). The complex 1 reacted with AgX (X = CF3SO3, BF4) and bidentate ligands [L–L = phen (phenanthroline), dppe (bis(diphenylphosphino)ethane), bipy(2,2′-bipyridine) and dppp (bis(diphenylphosphino)propane)] giving the mononuclear orthopalladated complexes [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(L–L)] (3) [L–L = phen, dppe, bipy and dppp]. These compounds were characterized by physico-chemical methods, and the structure of [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}Cl(L)] (L = sym-collidine) was determined by single-crystal X-ray analysis.  相似文献   

3.
Arene ruthenium complexes containing long-chain N-ligands L1 = NC5H4–4-COO–C6H4–4-O–(CH2)9–CH3 or L2 = NC5H4–4-COO–(CH2)10–O–C6H4–4-COO–C6H4–4-C6H4–4-CN derived from isonicotinic acid, of the type [(arene)Ru(L)Cl2] (arene = C6H6, L = L1: 1; arene = p-MeC6H4Pr i , L = L1: 2; arene = C6Me6, L = L1: 3; arene = C6H6, L = L2: 4; arene = p-MeC6H4Pr i , L = L2: 5; arene = C6Me6, L = L2: 6) have been synthesized from the corresponding [(arene)RuCl2]2 precursor with the long-chain N-ligand L in dichloromethane. Ruthenium nanoparticles stabilized by L1 have been prepared by the solvent-free reduction of 1 with hydrogen or by reducing [(arene)Ru(H2O)3]SO4 in ethanol in the presence of L1 with hydrogen. These complexes and nanoparticles show a high anticancer activity towards human ovarian cell lines, the highest cytotoxicity being obtained for complex 2 (IC50 = 2 μM for A2780 and 7 μM for A2780cisR).  相似文献   

4.
The ortho-metalated complex [Pd(x){κ 2 (C,N)-[C6H4CH2NRR′ (Y)}] (2a4a and 2b3b) was prepared by refluxing in benzene equimolecular amounts of Pd(OAc)2 and secondary benzylamine [a, EtNHCH2Ph; b, t-BuNHCH2Ph followed by addition of excess NaCl. The reaction of the complexes [Pd(x){κ 2 (C,N)-[C6H4CH2NRR′ (Y)}] (2a4a and 2b3b) with a stoichiometric amount of Ph3P=C(H)COC6H4-4-Z (Z = Br, Ph) (ZBPPY) (1:1 molar ratio), in THF at low temperature, gives the cationic derivatives [Pd(OC(Z-4-C6H4C=CHPPh3){κ 2 (C,N)-[C6H4CH2NRR′(Y)}] (5a9a, 4b6b, and 4b′6b′), in which the ylide ligand is O-coordinated to the Pd(II) center and trans to the ortho-metalated C(6)H(4) group, in an “end-on carbonyl”. Ortho-metallation, ylide O-coordination, and C-coordination in complexes (5a9a, 4b6b, and 4b′6b′) were characterized by elemental analysis as well as various spectroscopic techniques.  相似文献   

5.
1H and 13C NMR chemical shifts have been determined and assigned based on PFG 1H, 13C HMQC, and HMBC experiments for 3-(4′-X-benzyl)-4-chromenones (Ia, X = CN and Ib, X = NO2), 3-(4′-X-benzyl)-4-thiochromenones (IIa, X = Cl and IIb, X = Br), (E)-3-(4′-X-benzylidene)-4-chromanones (IIIaIIIe, X = OCH3, CH3, Cl, N(CH3)2, Br), (Z)-3-(4′-X-benzylidene)4-thiochromanones (IVaIVd, X = Cl, Br, F, OCH3), 2-benzyl-1,2,3,4-tetrahydro-1-naphthol (V), 2-benzyl- and (E)-2-benzylidene-1-tetralones (VI and VII), and (E)-2-benzylidene-1-benzosuberol (VIII). The crystal structures have been determined for the following seven compounds: derivatives of 4-chromanones (IIIaIIId), 1-tetrahydronaphtol (V), and 1-tetralones (VI and VII). The molecular features and intermolecular interactions in crystal state have been discussed.  相似文献   

6.

Abstract  

Reactions of the pyridyl side-chain-functionalized cyclopentadiene [C5H5CR2(CH2C5H4N)] [R 2 = Et2 (1), (CH2)4 (2)] with Ru3(CO)12 in refluxing xylene gave the new intramolecular C–H activated trinuclear product [μ-(C5H3N)CH2C(C2H5)2(C5H4)Ru(CO)]2Ru(CO)2 (3) and the normal dinuclear metal complex [(C5H4N)CH2C(CH2)4(C5H4)Ru(CO)]2(μ-CO)2 (4). The structures of the trinuclear complex 3 and dinuclear complex 4 were characterized by elemental analysis, IR spectra, 1H-NMR and X-ray diffraction.  相似文献   

7.
Series of new mixed aza-oxo-thia macrocyclic ligands {2,6,12,16-tetraaza-1,7,11,17-tetraoxo-9,19-dithia-[(4′-methyl-5′,4,3′)(14′-methyl-15′,14,13′)]ditriazine}cyclocosane (L 1 ); {2,6,13,17-teraaza-1,7,12,18-tetraoxo-9,10,20,21-tetrathia-[(4′-methyl-5′,4,3′)(15′-methyl-14′,16′,15)]di-triazine}cyclodocosane (L 2 ); {2,6,14,18-tetraaza-1,7,13,19-tetraoxo-10,22-dithia-[(4′-methyl-5′,3′,4)(16′-methyl-15′,17′,16)]ditriazine}cyclotetracosane (L 3 ) and {2,6,15,19-tetraaza-1,7,14,12-tetraoxo-10,11,23,24-tetrathia-[(4′-methyl-5′,4,3′)(17′-methyl-8′,17,16′)]ditriazine}cyclohexa-cosane (L 4 ) were synthesized. The structural features of the compounds have been studied by elemental analyses, Mass, FT-Raman, FT-IR, 1H and 13C NMR spectroscopy. The antimicrobial activities of the ligands were evaluated using disk diffusion method in dimethyl sulfoxide as well as the minimal inhibitory concentration (MIC) dilution method, against 9 bacteria. The obtained results from disk diffusion method were assessed in side-by-side comparison with those of Penicillin-g, Ampicillin, Cefotaxime, Vancomycin, Oflaxacin, and Tetracyclin, well-known antibacterial agents. The results from dilution procedure were compared with Gentamycin as antibacterial and Nystatin as antifungal. The antifungal activities are reported on five yeast cultures namely Candida albicans, Kluyveromyces fragilis, Rhodotorula rubra, Debaryomyces hansenii, and Hanseniaspora guilliermondii, and the results are referenced with Nystatin, Ketaconazole, and Clotrimazole, commercial antifungal agents. In most cases, the compounds show strong antifungal activity in the comparison tests.  相似文献   

8.

Abstract  

Metal complexes with long alkyl chains [Co(C16-terpy)3](BF4)2 (1), [Fe(C16-terpy)2](BF4)2 (2), [Co(C16-terpy)2](BPh4)2 (3), [Co(C14-terpy)2](BF4)2 (4), and [Fe(C12C10C5-terpy)2](BF4)2 (5) were synthesized and their physical properties characterized, where C16-terpy, C14-terpy, and C12C10C5-terpy are 4′-hexadecyloxy-2,2′:6′,2′′-terpyridine, 4′-tetradecyloxy-2,2′:6′,2′′-terpyridine, and 4′-5′′′-decyl-1′′′-heptadecyloxy-2,2′:6′,2″-terpyridine, respectively. Complexes 1, 2, and 5 exhibited liquid–crystal properties in the temperature ranges of 371–528 K and 466–556 K, and 88–523 K, respectively. Variable-temperature magnetic susceptibility measurements revealed that the Co(II) complexes 1 and 4 exhibited unique spin transitions (T 1/2↓ = 217 K and T 1/2↑ = 260 K for 1 and T 1/2↓ = 250 K and T 1/2↑ = 307 K for 4), so-called ‘reverse spin transition,’ induced by structural phase transitions. Complex 3 exhibited gradual spin-crossover behavior (T 1/2 = 160 K.), and complex 5 exhibited spin transitions (T 1/2↑ = 288 K and T 1/2↓ = 284 K) at the liquid crystal transition temperature. Compounds with multifunction, i.e., magnetic and liquid–crystal properties, are important in the development of molecular materials.  相似文献   

9.
Diacetylplatinum(II) complexes [Pt(COMe)2(N^N)] (N^N = bpy, 3a; 4,4′-t-Bu2-bpy, 3b) were found to undergo oxidative addition reactions with organyl halides. The reaction of 3a with methyl iodide and propargyl bromide led to the formation of the cis addition products (OC-6-34)-[Pt(COMe)2(R)X(bpy)] (R = Me, X = I, 4a; CH2C≡CH, X = Br, 4k). Analogous reactions of 3a with ethyl iodide, benzyl bromide, and substituted benzyl bromides, 3-(bromomethyl)pyridine, 2-(bromomethyl)thiophene, allyl bromide, and cyclohex-2-enyl bromide led to exclusive formation of the trans addition products (OC-6-43)-[Pt(COMe)2(R)X(bpy)] (X = I, R = Et, 4b; X = Br, R = CH2C6H5, 4c; CH2C6H4(o-Br), 4d; CH2C6H4(p-COOH), 4e; CH2-3-py (3-pyridylmethyl), 4f; CH2-2-tp (2-thiophenylmethyl), 4g; CH2CH=CH2, 4h; c-hex-2-enyl (cyclohex-2-enyl), 4i). All complexes 4 were characterized by microanalysis, 1H and 13C NMR and IR spectroscopy. Additionally, complexes 4a, 4f, and 4g were characterized by single-crystal X-ray diffraction analyses. Reactions of 3a and 3b with o-, m- and p-bis(bromomethyl)benzene, respectively, led to the formation of dinuclear platinum(IV) complexes [{Pt(COMe)2Br(N^N)}2-{μ-(CH2)2C6H4}] (5). These complexes were characterized by microanalysis, IR spectroscopy, and depending on their solubility by 1H and 13C NMR spectroscopy, too. A single-crystal X-ray diffraction analysis of complex [{Pt(COMe)2Br(bpy)}2{μ-m-(CH2)2C6H4}] (5b) confirmed its dinuclear composition. The solid-state structures of 4a, 4f, 4g, and 5b are discussed in terms of C–H···O and O–H···O hydrogen bonds as well as π–π stacking between aromatic rings.  相似文献   

10.
The difurylphosphido-bridged dinuclear complex [Ru2(CO)6(μ-PFu2)(μ-η12-Fu)] (Fu = 2-furyl) 1 readily reacts with two equivalents of each of the terminal alkynes HC≡CR (R = Fc, p-C6H4Fc, p-C6H4NO2, Fc = Fe(η5-C5H5)(η5-C5H4)) by an interesting head-to-tail ynyl coupling with a furan group to form a series of phosphido-bridged diruthenium compounds containing a novel furyl-substituted C4 hydrocarbyl chain of stoichiometry [Ru2(CO)4(μ-PFu2){μ-η1123-RCC(H)C(R)C(H)Fu}] (R = Fc 2, p-C6H4Fc 3, p-C6H4NO2 4) in moderate to good yields. Reaction of 1 with an equimolar amount of HC≡CFc and HC≡C(p-C6H4NO2) afforded a pair of isomers of [Ru2(CO)4(μ-PFu2){μ-η1123-R1CC(H)C(R2)C(H)Fu}] (R1 = Fc, R2 = p-C6H4NO2 5a; R1 = p-C6H4NO2, R2 = Fc 5b) together with a small mixture of 4. X-ray crystal structures of 2, 3, 5a and 5b are reported. All of these new alkyne-derived dinuclear complexes are electron precise with 34 cluster valence electrons in which the μ-η12-furyl ligand acts as a three-electron donor and the μ-phosphido Ru2 framework is retained in the products upon alkyne coupling reactions. The resulting organic fragment of each complex is coordinated to the Ru atoms via a π, a π-allyl and two σ bonds, and donates seven electrons to the metal core. Dedicated to the memory of Professor F. Albert Cotton.  相似文献   

11.
The reactions of a complex [(4-C7H8)RhCl]2 (C7H8 is norbornadiene) with salts of substituted nido-dicarbaundecaborates, [K][nido-7-R1-8-R2-7,8-C2B9H10] (R1 = R2 = H (a); R1 = R2 = Me (b); R1, R2 = 1,2-(CH2)2C6H4 (c); R1 = Me, R2 = Ph (d)), in CH2Cl2 afforded new closo-(2,3-(4-vinylcyclopenten-3-yl))rhodacarboranes. The structures of the compounds were studied by multinuclear NMR spectroscopy. A probable mechanism of the rearrangement of the norbornadiene ligand is discussed.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1875–1878, September, 2004.  相似文献   

12.
Abstract  Metal complexes with long alkyl chains [Co(C16-terpy)3](BF4)2 (1), [Fe(C16-terpy)2](BF4)2 (2), [Co(C16-terpy)2](BPh4)2 (3), [Co(C14-terpy)2](BF4)2 (4), and [Fe(C12C10C5-terpy)2](BF4)2 (5) were synthesized and their physical properties characterized, where C16-terpy, C14-terpy, and C12C10C5-terpy are 4′-hexadecyloxy-2,2′:6′,2′′-terpyridine, 4′-tetradecyloxy-2,2′:6′,2′′-terpyridine, and 4′-5′′′-decyl-1′′′-heptadecyloxy-2,2′:6′,2″-terpyridine, respectively. Complexes 1, 2, and 5 exhibited liquid–crystal properties in the temperature ranges of 371–528 K and 466–556 K, and 88–523 K, respectively. Variable-temperature magnetic susceptibility measurements revealed that the Co(II) complexes 1 and 4 exhibited unique spin transitions (T 1/2↓ = 217 K and T 1/2↑ = 260 K for 1 and T 1/2↓ = 250 K and T 1/2↑ = 307 K for 4), so-called ‘reverse spin transition,’ induced by structural phase transitions. Complex 3 exhibited gradual spin-crossover behavior (T 1/2 = 160 K.), and complex 5 exhibited spin transitions (T 1/2↑ = 288 K and T 1/2↓ = 284 K) at the liquid crystal transition temperature. Compounds with multifunction, i.e., magnetic and liquid–crystal properties, are important in the development of molecular materials. Graphical Abstract  
Shinya HayamiEmail:
  相似文献   

13.
Two semi-rigid bipyrazolyl ligands, namely 2,3,5,6-tetramethyl-1,4-bis[(3′,5′-dimethyl-1H -pyrazol-4′-yl)methylene]benzene (H2L) and 2,3,5,6-tetramethyl-1,4-bis[(3′,5′-diphenyl-1H -pyrazol-4′-yl)methylene]benzene (H2L′), and their Ag(I) and Cu(II) complexes have been prepared and structurally characterized by means of X-ray analysis. In the structures of the metal complexes, namely [Ag2(H2L)2](BF4)2·2H2O (1), [Ag(H2L)(NO3)]n (2), [Cu2(H2L)4(SO4)2]·11H2O (3), and {[Ag(H2L′)]BF4}n (4), the bipyrazoles act as bridging ligands to connect two metal atoms. Complexes 2 and 4 exhibit 1-D polymeric structures, while 1 and 3 are discrete molecules with a rectangular dimer or tetragonal prismatic shapes, respectively. Two different conformations, namely cis and trans, have been observed for these bipyrazolyl ligands.  相似文献   

14.
A series of trichlorogermyl-substituted dicarboxylic acids of general formula HOOC–R′–COOH where R′=–CH2CH(GeCl3)CH21, –CH(CH2GeCl3)CH22, –CH(GeCl3)CH23 and –CH(CH3)CH(GeCl3)– 4 were synthesized by the hydrogermylation reaction of unsaturated acids, such as trans-glutaconic (2-pentenedioic acid), itaconic (methylenebutanedioic acid), fumaric (2-butenedioic acid), and citraconic (2-methyl-2-butenedioic acid) acids with HGeCl3, which was produced in situ by the reaction of GeO2 with 37% HCl in presence of NaH2PO2 · H2O. All these compounds were characterized by melting point, CHN analysis, FTIR, and multinuclear NMR (1H; 13C; H,H-COSY). X-Ray crystal structures of 1 and 2 were analyzed to show supramolecular structures in which central Ge atom in each of these structures is four-coordinated with a slightly distorted tetrahedral geometry. Structurally, both compounds adopt supramolecular forms via strong intermolecular O–H–O interactions through 8-membered and 22-membered hydrogen bonded rings. Supplementary material to this paper is available in electronic form at Correspondence: Muhammad Mazhar, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.  相似文献   

15.
Abstract  Three chlorosalicylato titanocene compounds, namely [(MeCp)2Ti(O,O′)(OCC6H3-5-Cl)]2 (1), [(MeCp)2Ti(O,O′)(OCC6H2-3,5-Cl2)] (2) and [(MeCp)2Ti(O,O′)(OCC6H-3,5,6-Cl3)] (3) have been synthesized via the reaction of (MeCp)2TiCl2 [MeCp = η5-(CH3)C5H4] with the corresponding substituted chlorosalicylic acids in aqueous-organic systems in high yields and characterized by elemental analysis, IR and 1H NMR spectra. Single-crystal X-ray diffraction analysis shows that geometries at titanium (IV) atoms are distorted tetrahedrons and the exhibited frameworks are constructed through weak interactions, which are H-bonding, π–π stacking and C–H···π interactions. Additional weak interactions, such as Cl···Cl interactions in compound 1, are also present, which help to form and stabilize crystalline materials. It is noticeable that the discriminating framework structures of three compounds due to their weak interactions existing conspicuous changes which result from the number of chlorine atoms on substituted chlorosalicylates. Graphical Abstract  Three to four coordinated chlorosalicylato titanocene compounds, [(MeCp)2Ti(O,O′)(OCC6H3-5-Cl)]2 (1), [(MeCp)2Ti(O,O′)(OCC6H2-3,5-Cl2)] (2) and [(MeCp)2Ti(O,O′)(OCC6H-3,5,6-Cl3)] (3) have been synthesized in aqueous-organic system in high yields. Single-crystal X-ray diffraction analysis shows that geometries at titanium (IV) atoms are distorted tetrahedrons and the exhibited frameworks are constructed through weak interactions. The number of chlorine atoms on substituted chlorosalicylates has an effect on their framework structures.   相似文献   

16.

Abstract  

Based on the polydentate ligand 3,5-bis(3-pyridyl)-1H-1,2,4-triazole (3,3′-Hbpt), three coordination compounds [Zn(3,3′-Hbpt)(ip)]·2H2O (1), [Zn(3,3′-Hbpt)(5-NO2-ip)]·H2O (2), and [Zn(3,3′-Hbpt)2(H2pm)(H2O)2]·2H2O (3) have been hydrothermally constructed with H2ip, 5-NO2-H2ip and H4pm as auxiliary ligands (H2ip = isophthalic acid, 5-NO2-H2ip = 5-NO2-isophthalic acid, H4pm = pyromellitic acid). Structural analysis reveals that Zn(II) ions serve as four-coordinated, five-coordinated, and six-coordinated connectors in 13, respectively, while 3,3′-Hbpt adopts μ-Npy and Npy coordination modes in two typical conformations in these target coordination compounds. Dependently the applied ligand, compounds 13 exhibit either 1D channel, cage or chain structures, respectively. In addition, the luminescence properties of 13 have been investigated in the solid state at room temperature.  相似文献   

17.
Three isomorphous coordination polymers of general formula {[M(H2bna)·(DMF)2·(H2O)2]·DMF}n (M = Co for 1, Mn for 2, Ni for 3, respectively, where H4bna = 2,2′-dihydroxy-[1,1′]-binaphthalene-3,3′-dicarboxylate) were synthesized under solvothermal conditions and characterized by FTIR, single crystal X-ray diffraction, thermogravimetric analysis, and X-ray power diffraction analysis. All three polymers crystallize in the same monoclinic space group P21/n. The complexes are assembled into 1D helical chains, and each adjacent helical chain of the same chirality is further connected to form a chiral layer by hydrogen bond interactions. The layers are packed in alternating left-(M) and right-handed (P) chirality arrays. Magnetic studies reveal the presence of antiferromagnetic coupling interactions in complexes 1 and 2.  相似文献   

18.
Two Mn(II) coordination polymers, namely [Mn(bpda)] n (1) and [Mn(bpda)(bpy)0.5] n (2) (H2bpda = 1,1′-biphenyl-3,3′-dicarboxylic acid and bpy = 4,4′-bipyridine), have been synthesized from H2bpdc, bpy, and MnSO4·2H2O under hydrothermal conditions. The complexes were characterized by physicochemical and spectroscopic methods, as well as by X-ray crystallography. Compound 1 possesses a 3D structure consisting of carboxylate-bridged edge-sharing Mn–O–Mn double chains. Compound 2 features a 3D open structure with a dinuclear Mn(II) secondary building unit. Magnetic susceptibility measurements of compounds 1 and 2 exhibit antiferromagnetic interactions between the nearest Mn(II), with J = –11.3 cm−1 and g = 2.12 for 1, and J = –13.5 cm−1 and g = 2.12 for 2.  相似文献   

19.
Two new complexes with formula VOL2·nH2O ((1) L: 4′,5,7-trihydroxyflavone-7-rhamnoglucoside (naringin), n = 8; (2) L: 3′,4′,7-tris[O-(2-hydroxyethyl)]rutin (troxerutin), n = 0) were synthesised and characterised. The IR and UV–Vis spectral data indicate that these flavones act as bidentate chelating ligands and generate VO(II) complexes with a square-pyramidal stereochemistry. The thermal analysis (TG, DTA) elucidated the composition and also the number and nature of the water molecules. The thermal behavior indicates also a strong interaction between oxovanadium (IV) and these oxygen donor ligands.  相似文献   

20.

Abstract  

Treatment of [Cp*MoCl4], 1 (Cp* = η5-C5Me5), with [LiBH4.thf] in toluene at −40 °C, followed by thermolysis with [(thf)Li{CH(PPh2–BH3)2}] results in the formation of a new class of phosphido bridged molybdaborane [(Cp*Mo)2B4H7(μ-PPh2)], 2 which has been characterized crystallographically. In addition, the above reaction also produces known [(Cp*Mo)2B5H9], 3 and an unusual molybdaborane [(Cp*Mo)2B5H8(O i Pr)], 4 ( i Pr = –CH(CH3)2). All the new compounds have been characterized in solution by 1H, 11B, 13C, 31P NMR spectroscopy and the structural types were unambiguously established by X-ray crystallographic analysis of compounds 2 and 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号