共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang Yong-Hui Li Yu-Liang Yang Jianming Zhou Pan-Pan Xie Kefeng 《Structural chemistry》2020,31(1):97-101
Physisorption of bromopentafluorobenzene (C6F5Br) on graphene can occur due to the unique σ-hole and π-hole characters of C6F5Br and the rich π-electrons region of graphene, leading to the formation of three types of π-hole···π and σ-hole···π interactions. The π-hole···π interactions are even stronger than the σ-hole···π interactions. The property of graphene was significantly affected by such physisorption.
相似文献2.
Pagels N Albrecht O Görlitz D Rogachev AY Prosenc MH Heck J 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(15):4166-4176
The paramagnetic dinuclear complexes 1,8-bis(cobaltocenyl)naphthalene (2) and 1,8-bis[(pentamethyl-η(5)-cyclopentadienyl)(η(5)-cyclopentadiendiyl)cobalt(II)]naphthalene (4) were synthesized. The molecular structures were characterized by X-ray structure analysis and consisted of two cobaltocenes linked through a distorted naphthalene clamp. Electronic interactions between the two cobalt atoms were observed by cyclic voltammetric studies. Superconducting quantum interference device (SQUID) measurements of the pure compounds and diluted in their diamagnetic iron derivatives, as well as variable-temperature NMR spectroscopy experiments in solution are presented. Magnetic measurements revealed an antiferromagnetic coupling of the electrons in complexes 2 and 4. From NMR spectroscopy experiments, Curie behavior in the temperature range from -60 to +60 °C can be deduced. The electronic structure and magnetic behavior is supported by results of broken-symmetry DFT and multireference calculations along with UV/Vis spectroscopic data, which revealed an intramolecular through space π-π interaction between the cobaltocene units. 相似文献
3.
The vibrational overtone spectra of propargyl alcohol (prop-2-yn-1-ol, PA), allyl alcohol (prop-2-en-1-ol, AA), propargyl carbinol (but-3-yn-1-ol, PC) and allyl carbinol (but-3-en-1-ol, AC) were recorded with intracavity laser photoacoustic spectroscopy (ICL-PAS) in the Δv(OH) = 3, 4 and 5 regions for propargyl alcohol and allyl alcohol and in the Δv(OH) = 4 and 5 regions for propargyl carbinol and allyl carbinol. Local mode anharmonic oscillator calculations were performed with explicitly correlated coupled cluster methods to guide spectral assignment. Atoms in molecules (AIM) and non-covalent interactions (NCI) calculations were carried out to analyze the interactions between the OH-group and the π-electrons of the carbon-carbon multiple bonds. We ascertain the effect of the carbon chain length and saturation on the conformation and spectroscopy of the four alcohols in relation to intramolecular hydrogen bonding interactions. 相似文献
4.
Subtle noncovalent forces such as π-π interactions play an import role in the folding of biological macromolecules such as DNA and proteins. We describe here a system where such interactions on the outside of a molecular capsule trigger a selective change of its structure as a self-assembled receptor. 相似文献
5.
A molecular electrostatic potential (MESP) topography based approach has been proposed to quantify the substituent effects on cation-π interactions in complexes of mono-, di-, tri-, and hexasubstituted benzenes with Li(+), Na(+), K(+), and NH(4)(+). The MESP minimum (V(min)) on the π-region of C(6)H(5)X showed strong linear dependency to the cation-π interaction energy, E(M(+)). Further, cation-π distance correlated well with V(min)-π distance. The difference between V(min) of C(6)H(5)X and C(6)H(6) (ΔV(min)) is proposed as a good parameter to quantify the substituent effect on cation-π interaction. Compared to benzene, electron-donating groups stabilize the di-, tri-, and hexasubstituted cation-π complexes while electron-withdrawing groups destabilize them. In multiple substituted complexes, E(M(+)) is almost equal (~95%) to the sum of the individual substituent contributions (E(M(+)) ≈ Σ(ΔE(M(+)))), suggesting that substituent effect on cation-π interactions is largely additive. The ΔV(min) of C(6)H(5)X systems and additivity feature have been used to make predictions on the interaction energies of 80 multiple substituted cation-π complexes with above 97% accuracy. The average mean absolute deviation of the V(min)-predicted interaction energy, E(M(+))(V) from the calculated E(M(+)) is -0.18 kcal/mol for Li(+), -0.09 kcal/mol for Na(+), -0.43 kcal/mol for K(+), and -0.67 kcal/mol for NH(4)(+), which emphasize the predictive power of V(min) as well as the additive feature of the substituent effect. 相似文献
6.
Hydrothermal reaction of zinc acetate with diethyl [(phenylsulfonyl)methyl]phosphonate as well as 1,10-phenanthroline (phen)
afforded a novel zinc(II) phosphonate with the formula of [Zn4(PhSO2CH2PO3)4(phen)2(H2O)2]·2H2O. Such compound features two conformational isomeric 1D chains which are regulated by two different π···π stacking interactions.
In addition, it exhibits broad blue fluorescent emission band at 387 nm. 相似文献
7.
Sarkar A Itkis ME Tham FS Haddon RC 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(41):11576-11584
We report the synthesis, crystallization, and solid-state characterization of the 3,7-ethoxy-substituted spirobiphenalenyl-boron neutral radical 22. The radical is distinguished by its low disproportionation energy and one-dimensional structure. We show that our strategy of substitution of OEt group at the active positions of the phenalenyl units changes the crystal packing from its previously known OMe analogue and the solid-state properties are dictated by the partial π-stack structure and the oxygen atoms at the 3,7-positions and can be best rationalized in terms of the resonating valence bond model. Magnetic susceptibility measurements show that in the solid state the radical remains paramagnetic but there is significant spin-spin interaction between the molecules. Band structure calculations reflect efficient overlap between the molecules along the π stack and show evidence of interactions between the spin-bearing oxygen atoms. The room temperature electrical conductivity (σ(RT)=2.0×10(-2) S cm(-1)) of 22 is higher than that observed in previously known one-dimensional phenalenyl radicals. 相似文献
8.
Hansen SW Stein PC Sørensen A Share AI Witlicki EH Kongsted J Flood AH Jeppesen JO 《Journal of the American Chemical Society》2012,134(8):3857-3863
Flexibility in pseudorotaxanes and interlocked molecules that rely on interactions between π-donor-acceptor subunits provides access to folded structures reminiscent of the tertiary structure of proteins. While they have been described before, only now have we been able to quantify one such tertiary structure by making use of pseudorotaxanes designed for the purpose. Here, the enhanced stability of a pseudorotaxane inside a folded structure is measured to be ΔG = ca. 0.5 kcal mol(-1). The tertiary structure is stabilized by a charge-transfer interaction between a tetrathiafulvalene-based π-donor that can situate alongside a π-accepting paraquat-based macrocycle by folding of a flexible linker. At room temperature, it was estimated that 70% of the pseudorotaxanes examined here exist in their folded state. This quantitative information is critical for the creation of interlocked molecular machines that have predictable energetics and structures and for revealing a complexity approaching biological molecules. 相似文献
9.
ZHANG Zunting & WANG Xiaobing School of Chemistry Materials Science Shaanxi Normal University Xi''''an China 《中国科学B辑(英文版)》2005,(4)
Supramolecular forces, including electrostatic in- teraction, hydrogen bond, hydrophobic interaction and aromatic stacking interaction, are the important re- search area in supramolecular chemistry and crystal engineering[1]. Aromatic stacking interaction… 相似文献
10.
Amrita DasSomnath Ray Choudhury Prankrishna MannaDominic Baxter Madeleine HelliwellSubrata Mukhopadhyay 《Polyhedron》2011,30(12):2121-2126
One Mg(II) malonate complex with protonated 2-aminopyridine and hexafluoridophosphate as counterions, (C5H7N2)4[Mg(C3H2O4)2(H2O)2](PF6)2 (1) [C5H7N2 = protonated 2-aminopyridine, C3H4O4 = malonic acid] has been synthesized from purely aqueous media just by mixing the reactants in their stoichiometric proportion and its crystal structure has been determined by single-crystal X-ray diffraction. The role of weak forces like lone pair?π and anion?π interactions in influencing the self-assembly process appears to be of importance. A rare combination of lone pair?π and anion?π interactions in 1, of the type lone pair?π/π?π/π?anion, is observed, and this unusual supramolecular network is fully described here. 相似文献
11.
Two novel compounds, 3,8-dibromo-2-methoxyl-7-isopropoxyisoflavanone (1) and 3,6-dibromo-2-methoxyl-7-isopropoxyisoflavanone
(2), are synthesized via bromination reaction of their precursor ipriflavone in methanol. The mixture of 1 and 2 co-crystallizes
in ethanol and forms two different crystal shapes, the shape of 1 being block and 2 prism, they can be separated manually.
1 and 2 are characterized by IR, 1H NMR and single crystal X-ray diffraction. The mechanism of bromination reaction is also discussed. 1 crystallizes in the
monoclinic space group P21/n with cell parameters a = 1.3569(3) nm, b = 0.6706(2) nm, c = 2.0704(4) nm, β = 97.50(2)°, V = 1.8678(6) nm3, Z = 4, Dc = 1.672 Mg/m3, R = 0.0455, wR = 0.0779, F(000) = 936. 2 crystallizes in the monoclinic space group P 21/c with cell parameters a =1.3854(17) nm, b = 1.1215(14) nm, c = 1.3038(17) nm, β = 103.71(2)°, V = 1.968(4) nm3, Z = 4, Dc = 1.587 Mg/m3, R = 0.0306, wR = 0.0619, F(000) = 936. The Br...π interactions, hydrogen bonds, aromatic hydrogen bonds and aromatic stacking interactions
exist in the crystal structures of 1 and 2, which lead them into supramolecular compounds with a three-dimensional network
structure, respectively. 1 and 2 are the isoflavanone derivatives halogenated at C3 and this kind of isoflavanone halides
has not been reported yet. 相似文献
12.
Franco Ugozzoli Ottorino Ori Alessandro Casnati Andrea Pochini Rocco Ungaro David N. Reinhoudt 《Supramolecular chemistry》2013,25(2):179-184
Abstract The crystal and molecular structures of the 1,3-diisopropoxy-p-tertbutyl calix[4]arene crown-5 fixed in the partial cone conformation and that of its potassium picrate salt have been determined by single crystal X-ray diffraction studies. Energy calculations have been performed to gain more insight on the stabilizing cation…ligand interactions. The calculation of the total potential energy indicates that the contribution which comes from the electrostatic polarization induced by the electric field of the cation on the rotated nucleus gives a net stabilizing contribution of almost 6 kcal/mol. A comparison between the molecular geometry of some partial cone 1,3-disubstituted-p-tertbutylcalix[4]arene derivatives is reported and discussed in view of the preorganization principle. 相似文献
13.
Dutta A Jana AD Gangopadhyay S Das KK Marek J Marek R Brus J Ali M 《Physical chemistry chemical physics : PCCP》2011,13(35):15845-15853
A combination of a single crystal X-ray diffraction study and density functional theory calculations has been applied to a bidentate Schiff base compound to elucidate different cooperative non-covalent interactions involved in the stabilization of the keto form over the enol one in the solid state. The single crystal X-ray structure reveals a remarkable supramolecular assembly of the keto form through a cyclic hydrogen bonded dimeric motif. The most interesting feature in the supramolecular assembly is the formation of a 'dimer of dimer' motif by π···π, CH···π and N···O/O···O interactions in which the π···π interaction involving the aromatic phenyl ring and the intramolecularly hydrogen bonded pseudo-aromatic ring of the keto form lying just above or below the phenyl ring of the other dimer seems to be unprecedented. The optimized geometry of the hydrogen bonded dimeric motif of the keto form of the organic molecule has been obtained by DFT calculations and agrees very well with that found within the crystalline state. The X-ray crystallographic geometry of the 'dimer of dimer' has also been computed, which shows that in the HOMO, the π electrons are localized in the phenyl rings away from each other, while in the LUMO, there is a strong π-π interaction between the phenyl ring of one dimer with the pseudo-aromatic ring of another dimer with an energy estimated to be 7.95 kJ mol(-1). Therefore, on HOMO → LUMO excitation there is localization of π electrons in the central part of the complex moiety which plays a stabilizing role of the dimer of dimer motif in the solid state. 相似文献
14.
The stability constantsK of 11 complexes formed in aqueous solution between several monosubstituted benzenes (C6H5X) and methanes (CH3X) as guests and cyclotetrachromotropylene as host were determined by proton NMR spectroscopy. Variations ofK with the substituent X are attributed to the electronic effect of X and the presence of C–H or aromatic bonds, if any, interacting with the host bonds. 相似文献
15.
An extremely simple formula to estimate the heat of formation of complexes between anion and a polar molecule or between highly polar systems is presented.The formula is entirelyelectrostatic and the expression used is verified by means of perturbation theory.This formula is test-ed for several ion-molecule and molecule-molecule pairs.It is also applied to estimate the heat ofhydration of simple salts. 相似文献
16.
Here the interactions of furan with HZ (Z = CCH, CCF, CN, Cl, and F) are studied using a variety of electron correlation methods (MP2, CCSD(T), DFT-SAPT) and correlation-consistent triple- and quadruple-ζ basis sets including complete basis set (CBS) extrapolation. For Fu-HF all methods agree that a n-type structure with a hydrogen bridge between the oxygen lone-pair of furan and the hydrogen atom of HF is the global minimum structure. It is found to be significantly more stable than a π-type structure where the hydrogen atom of HF points toward the π system of furan. For the other four dimers MP2 and DFT-SAPT predict the π-type structure to be somewhat more stable, while CCSD(T) favors the n-type structure as the global minimum for Fu-HCl and predicts both structures as nearly isoenergetic for Fu-HCCH and Fu-HCCF. From a geometrical point of view, the Fu-HCN dimer structures are more related to those of the Fu-HCl complex than to Fu-HCCH. The different behavior of HCCF and HF upon complexation with furan evidence the effect of the presence of a π system in the aggregation of fluorine derivatives. It is shown that aggregates of furan cannot be understood by means of dipole-dipole and electrostatic analysis only. Yet, through a combined and detailed analysis of DFT-SAPT energy contributions and resonance effects on the molecular charge distributions a consistent explanation of the aggregation of furan with both π electron rich molecules and halogen hydrides is provided. 相似文献
17.
Churchill CD Rutledge LR Wetmore SD 《Physical chemistry chemical physics : PCCP》2010,12(43):14515-14526
The (gas-phase) MP2/6-31G*(0.25) π···π stacking interactions between the five natural bases and the aromatic amino acids calculated using (truncated) monomers composed of conjugated rings and/or (extended) monomers containing the biological backbone (either the protein backbone or deoxyribose sugar) were previously compared. Although preliminary energetic results indicated that the protein backbone strengthens, while the deoxyribose sugar either strengthens or weakens, the interaction calculated using truncated models, the reasons for these effects were unknown. The present work explains these observations by dissecting the interaction energy of the extended complexes into individual backbone···π and π···π components. Our calculations reveal that the total interaction energy of the extended complex can be predicted as a sum of the backbone···π and π···π components, which indicates that the biological backbone does not significantly affect the ring system through π-polarization. Instead, we find that the backbone can indirectly affect the magnitude of the π···π contribution by changing the relative ring orientations in extended dimers compared with truncated dimers. Furthermore, the strengths of the individual backbone···π contributions are determined to be significant (up to 18 kJ mol(-1)). Therefore, the origin of the energetic change upon model extension is found to result from a balance between an additional (attractive) backbone···π component and differences in the strength of the π···π interaction. In addition, to understand the effects of the biological backbone on the stacking interactions at DNA-protein interfaces in nature, we analyzed the stacking interactions found in select DNA-protein crystal structures, and verified that an additive approach can be used to examine the strength of these interactions in biological complexes. Interestingly, although the presence of attractive backbone···π contacts is qualitatively confirmed using the quantum theory of atoms in molecules (QTAIM), QTAIM electron density analysis is unable to quantitatively predict the additive relationship of these interactions. Most importantly, this work reveals that both the backbone···π and π···π components must be carefully considered to accurately determine the overall stability of DNA-protein assemblies. 相似文献
18.
Theoretical calculations have been carried out on 3,3′-dimethyl-1,1′-diphenyl-5,5′-bi-1H-pyrazole to evaluate its usefulness as a molecular balance to measure π−π stacking. After removing the methyl groups (1,1′-diphenyl-5,5′-bi-1H-pyrazole), the N-phenyl groups have been replaced by a series of aromatic rings, and the energy difference between the syn and anti forms is discussed in terms of π−π stacking and dipole-dipole interactions. 相似文献
19.
González-Rodríguez D Carbonell E Rojas Gde M Castellanos CA Guldi DM Torres T 《Journal of the American Chemical Society》2010,132(46):16488-16500
We have synthesized two different fullerene-subphthalocyanine-ferrocene conjugates. The molecules were designed so that the ferrocene unit is linked at the subphthalocyanine axial position through a phenoxy spacer while the C(60) is rigidly held close to the concave face of the macrocycle via a 3-fold C(3)-symmetrical anchoring. The Bingel trisaddition reaction leading to the final products proceeded with very high regioselectivities and full diastereoselectivity. The only difference between both systems is the length of the triple tether employed, which finely regulates the regioselectivity of the trisaddition reaction and the distance between the subphthalocyanine and the C(60) complementary π-π surfaces. Thus, when the tether is connected to the subphthalocyanine through a direct C-C bond, a short π-π distance of 3.25-3.30 ? was calculated. In contrast, when it is connected through a slightly longer C-O-C bond, the distance increases to 3.5-3.6 ?. This π-π distance has a strong influence on the ground-state electronic interactions between the subphthalocyanine and the C(60), as determined from electronic absorption and cyclic voltammetry measurements. In addition, fluorescence and time-resolved transient absorption experiments demonstrated that different mechanisms operate in the two systems after photoexcitation. Despite the similar HOMO-LUMO gaps, only when the two complementary π-π surfaces of the subphthalocyanine and the C(60) are held at a close distance, therefore showing a high degree of orbital overlap, is a multistep electron transfer process triggered, ultimately leading to the long-lived, spatially separated C(60) radical anion and ferrocenium radical cation pair. A full account of the synthesis, characterization, and studies of the ground- and excited-state electronic interactions occurring in these conjugates, as well as in their reference C(60)-subphthalocyanine and subphthalocyanine-ferrocene dyads, is presented in this article. 相似文献