首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electric quadrupole interaction parameters for impurity 111Cd nuclei in intermetallic RAl3 compounds (R = La, Ce, Sm, Gd, Tb, Dy, Ho, Er, Yb, or Lu) synthesized under high (8 GPa) pressure at high (1800–1900°C) temperatures have been measured using the method of perturbed angular γγ correlations. It has been established by X-ray diffraction analysis that with an increase in the atomic number of the R element the obtained high-pressure phases are crystallized successively in the orthorhombic, hexagonal, and cubic structures. In the compounds with R = La, Ce, Sm, and Gd, deviation from the known structural types and formation of new ones due to the change in the stoichiometric composition have been observed. The data obtained by the method of perturbed angular γγ correlations have confirmed deviation from the specified stoichiometric composition 1R: 3Al for the LaAl3, CeAl3, SmAl3, and GdAl3 compounds and verified the correctness of the stoichiometric composition and the presence of the Cu3Au structural type for the remaining RAl3 high-pressure phases.  相似文献   

2.
A study of theEXAFS associated with theK x-ray absorption discontinuity of germanium in pure germanium and in the rare-earth germanides RGe2 (where R=La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er and Y) has been carried out. The Ge-Ge distances have been obtained in these compounds. Considering the phase to the RGe2 system, the bond lengths in these compounds have been determined. The values obtained by us for the RGe2 compounds (R=La, Ce, Pr, Nd, Sm, Gd, Dy and Y) agree with those obtained earlier by crystallographic methods. The bond lengths for the compounds TbGe2, HoGe2 and ErGe2 are also being reported.  相似文献   

3.
The crystal structure and magnetic properties of quaternary rare-earth intermetallic borides R3Co29Si4B10 with R=La, Ce, Pr, Nd, Sm, Gd and Dy have been studied by X-ray powder diffraction and magnetization measurements. All compounds crystallize in a tetragonal crystal structure with the space group P4/nmm. Compounds with R=La, Ce, Pr, Nd and Sm are ferromagnets, while ferrimagnetic behavior is observed for R=Gd and Dy. The Curie temperatures vary between 149 K and 210 K. The Curie temperatures in R3Co29Si4B10 (R=Ce, Pr, Nd, Sm, Gd, Dy) compounds are roughly proportional to the de Gennes factors.  相似文献   

4.
Perturbed angular correlation spectroscopy has been used to investigate the combined magnetic and electric hyperfine interaction of the probe nucleus 111Cd in ferromagnetically ordered rare earth (R)-dialuminides RAl2 as a function of temperature for the rare earth constituents R=Pr, Nd, Sm, Eu, Tb, Dy, Ho and Er. In compounds with two magnetically non-equivalent Al sites (R=Sm, Tb, Ho, Er), the magnetic hyperfine field was found to be strongly anisotropic. This anisotropy is much greater than the anisotropic dipolar fields, suggesting a contribution of the anisotropic 4f-electron density to magnetic hyperfine field at the closed-shell probe nucleus. The spin dependence of the magnetic hyperfine field reflects a decrease of the effective exchange parameter of the indirect coupling with increasing R atomic number. For the compounds with the R constituents R=Pr, Nd, Tb, Dy and Ho the parameters B4, B6 of the interaction of the crystal field interaction have been determined from the temperature dependence of the magnetic hyperfine field. The 111Cd PAC spectrum of EuAl2 at 9 K confirms the antiferromagnetic structure of this compound.  相似文献   

5.
We report measurements of the magnetic susceptibility and electrical resistivity of the iostructural compounds RE2Zn17 (RE=La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). The composition dependence of the lattice parameter and effective moment indicate that all the RE ions are trivalent except Yb which is divalent. Magnetic order is observed in compounds where RE=Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Er. A second transition is seen for RE=Pr, Ho, Sm and Tb. Superzone boundary effects are observed in the electrical resistivity of these four alloys as well as in Er2Zn17. Resistivity measurements reveal concentrated Kondo behavior (or 4f instability) of Ce in Ce2Zn17.  相似文献   

6.
The structural properties, elastic properties and electronic structures of hexagonal Al3RE intermetallic compounds are calculated by using first-principles calculations based on density functional theory. Since there exists strong on-site Coulomb repulsion between the highly localized 4f electrons of RE atoms, we present a combination of the GGA and the LSDA+U approaches in order to obtain the appropriate results. The GGA calculated lattice constants for the hexagonal Al3RE intermetallic compounds are in good agreement with available experimental values. The results of cohesive energy indicate that these compounds can be stable under absolute zero Kelvin and the stability of Al3Gd is the strongest in all of the hexagonal Al3RE compounds. The densities of states for GGA and LSDA+U approaches are also obtained for the Al3RE intermetallic compounds. The mechanical properties are calculated from the GGA method in this paper. According to the computed single crystal elastic constants, Al3La, Al3Sm and Al3Gd are mechanically unstable, while Al3Ce, Al3Pr and Al3Nd are stable. The polycrystalline elastic modulus and Poisson’s ratio have been deduced by using Voigt-Reuss-Hill (VRH) approximations, and the calculated ratio of bulk modulus to shear modulus indicates that Al3La compound is ductile material, but Al3Ce, Al3Pr, Al3Nd, Al3Sm and Al3Gd are brittle materials.  相似文献   

7.
Perturbed gamma–gamma angular correlation (PAC) technique was used to measure the magnetic hyperfine field (mhf) in RNiIn (R = Gd, Dy, Tb, Ho) intermetallic compounds using the 111In→111Cd and 140La→140Ce probe nuclei. The PAC spectra for 111Cd measured above magnetic transition temperature show a major fraction with a well defined quadrupole interaction for all compounds except GdNiIn where a single frequency was observed. PAC measurements below T C showed a combined electric quadrupole plus magnetic dipole interaction for 111Cd probe at In sites, and a pure magnetic interaction for 140Ce at R sites. The temperature dependence of mhf measured with 140Ce at R sites shows that the values of fields drop to zero at temperatures around the expected T C for each compound. However, in the measurements with 111Cd at In sites, the mhf values become zero at temperatures which are smaller than T C . The difference between the temperatures at which mhf is zero for 140Ce and 111Cd probes correlates with T C . For each compound this difference decreases with T C . The results are discussed in terms of the RKKY model for magnetic interactions and the existence of two magnetic systems, with distinct exchange interaction energies due to different types of atomic layers in these compounds.  相似文献   

8.
CaREZrNbO7 (RE = La, Nd, Sm, Gd and Y) system changed from fluorite (F)-type to pyrochlore (P)-type structure when the ionic radius ratios, r(Ca2+–RE3+)av/r(Zr4+–Nb5+)av were larger than 1.34. Thus, the La, Nd, and Sm compounds have a cubic P-type structure and the Gd and Y ones have a defect F-type structure. The electrical conductivity was measured using complex-plane impedance analysis over a wide temperature (300–750 °C) and frequency (1 Hz–1 MHz) ranges. The conductivity relaxation phenomenon was observed in these compounds and the relaxation frequencies were found to show Arrhenius-type behavior and activation energies were in good agreement with those obtained from high temperature conductivity plots. These results support the idea that the relaxation process and the conductivity have the same origin. The ionic conductivity of CaREZrNbO7 (RE = La, Nd, Sm, Gd and Y) system showed the maximum at the phase boundary between the F-type and P-type phases. On the other hand, the activation energy for the conduction decreased in the F-type phase and increased in the P-type phase with increasing ionic radius ratio. Among the prepared compounds, CaGdZrNbO7 showed the highest ionic conductivity of 9.47 × 10− 3 S/cm at 750 °C which was about twice as high as that observed in Gd2Zr2O7 (4.2 × 10− 3 S/cm at 800 °C). The grain morphology observation by scanning electron microscope (SEM) showed well-sintered grains. AC impedance measurements in various atmospheres further indicated that they are predominantly oxide ion conductors at elevated temperatures (> 700 °C).  相似文献   

9.
Ternary tetragonal compounds of the composition R2Fe14B were observed for R = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu. The lattice constants and the X-ray density of these compounds were determined. Also determined were the magnetic properties, comprising the temperature dependence of the magnetization in the range 4.2–700 K and the field dependence of the magnetization at 4.2 K in fields up to 20 T. These latter measurements were made in two mutually perpendicular directions, making it possible to determine the anisotropy fields. The magnetocrystalline anisotropy was found to consist of contributions due to the Fe and rare-earth sublattice, respectively.  相似文献   

10.
The magnetic properties of RNi4Ga (R=La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm and Lu) compounds have been investigated. These compounds form in a hexagonal CaCu5 type structure with a space group P6/mmm. Compounds with the magnetic rare earths, R= Nd, Sm, Gd, Tb, Dy, Ho, Er and Tm, undergo a ferromagnetic transition at 5, 17, 20, 19, 12, 3.5, 8 and 6.5 K, respectively. The transition temperatures are smaller compared to their respective parent compounds RNi5. PrNi4Ga is paramagnetic down to 2 K. LaNi4Ga and LuNi4Ga are Pauli paramagnets. All the compounds show thermomagnetic irreversibility in the magnetically ordered state except GdNi4Ga.  相似文献   

11.
Dielectric constant (ε′), AC conductivity (σ), and seebeck coefficient (S) have been measured for the ferrite samples of the general formula Mn0.5Zn0.5RyFe2O4; where R=Dy, Gd, Sm, Ce, and La prepared by standard ceramic technique and sintered at 1200 °C with a heating rate 4 °C/min. X-ray diffractograms show that all samples posses the spinel structure with the appearance of small peaks representing secondary phases. There is a lowering in the porosity starting after Sm-doped samples due to the presence of the secondary phases, which limits the grain growth. Due to seebeck measurements the manganese–zinc (Mn–Zn) ferrite doped with the rare earth has been classified as P-type semiconductors. It is possible to increase the electrical resistivity by using a small quantity of Dy3+ ions substitutions owing to the structural heterogeneity generated by the insulating intergranular layers. The isolation of the grains is the most promising approaches for further reduction in the eddy current losses at the operating frequencies.  相似文献   

12.
The geometries, electronic structures, spin magnetic moments (SMMs), orbital magnetic moments (OMMs) and spin anisotropy energies (SAEs) of light rare earth atoms (La, Ce, Pr, Nd, Pm, Sm, Eu, and Gd) embedded in graphene were studied by using first-principles calculations based on Density Functional Theory (DFT). The spin-orbital coupling effect was taken into account and GGA+U method was adopted to describe the strongly localized and correlated 4f electrons. There is a significant deformation of the graphene plane after doping and optimization. The deformation of Gd doped graphene is the largest, while Eu the smallest. The results show that the valence is +3 for La, Ce, Pr, Nd, Pm, Sm and Gd, and +2 for Eu. Except Eu and Gd, there are obvious OMMs. When the spin is in the Z direction, the OMMs are −0.941 μB, −1.663 μB, −3.239 μB, −3.276 μB and −3.337 μB for Ce, Pr, Nd, Pm and Sm, respectively, and point the opposite direction of SMMs. All the doped systems except Gd show considerable SAEs. For Ce, Pr, Nd, Pm, Sm, and Eu, the SAEs are −0.928 meV, 20.941 meV, −8.848 meV, 7.855 meV, 75.070 meV and 0.810 meV, respectively. When the spin orientation is different, different orbital angular moments lead to apparent charge density difference of the 4f atoms, which can also explain the origin of SAEs.  相似文献   

13.
The extended x-ray absorption fine structure (EXAFS) associated with the GeK x-ray absorption discontinuity in pure germanium and in the intermetallics RGe2 (R=La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er and Y) has been studied. The Ge-R distances in these compounds have been determined by comparing the experimental phase shifts with the theoretical ones. The Ge-R distances in the compounds TbGe2, HoGe2 and ErGe2 are being reported for the first time in this work.  相似文献   

14.
The magnetic properties have been studied for the series of RNi5−xCux intermetallics with R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu; x  ?2.5. Compositional dependences of magnetic susceptibility for the Pauli paramagnets (R=Y, La, Ce, Lu) and the Curie temperature for ferromagnets (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm) have maximum at x=0.2–0.4x=0.20.4 and 1, respectively. The substitution of Cu for Ni is accompanied by decreasing spontaneous magnetic moment and increasing coercive force of all ferromagnetic RNi5−xCux but GdNi5−xCux. These results are explained in the frame of band magnetism, random local crystal field, and domain wall pinning theories.  相似文献   

15.
Perturbed gamma-gamma angular correlation (PAC) technique was used to measure the hyperfine interactions in the intermetallic compound GdPdIn using 111In→ 111Cd and 140La→ 140Ce probe nuclei at the In and Gd sites, respectively. The PAC results for 111Cd show two well-defined electric quadrupole frequencies above T C assigned to probes occupying Gd and In sites, with ~50% of site occupation each. The fraction corresponding to In sites increases with temperature reaching 95% around 500 K. Below T C the measurements for 111Cd probe showed combined electric quadrupole plus magnetic dipole interaction with sharp increase in the magnetic field below around 80 K. A pure magnetic interaction with lower hyperfine field values was observed at the Gd sites occupied by 140Ce below 100 K.  相似文献   

16.
Four new ternary boride systems with the CeCo3B2-type structure are reported with the general formulae: MRu3B2 (M = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Th or U), MRh3B2 (M = La, Ce, Pr, Nd, Sm, Eu or Gd), MOs3B2 (M = Lu or U) and MIr3B2 (M = La, Th or U). Most members of these systems were found to become either superconducting or magnetically ordered. The structure and properties of these materials are discussed in relation to those of other ternary systems previously reported to exhibit superconductivity and/or magnetic order.  相似文献   

17.
Gadolinium calcium oxoborate (GdCOB) is a nonlinear optical material that belongs to the calcium-rare-earth (R) oxoborate family, with general composition Ca4RO(BO3)3 (R3+ = La, Sm, Gd, Lu, Y). X-ray photoemission was applied to study the valence band electronic structure and surface chemistry of this material. High resolution photoemission measurements on the valence band electronic structure and Gd 3d and 4d, Ca 2p, B 1s and O 1s core lines were used to evaluate the surface and near surface chemistry. These results provide measurements of the valence band electronic structure and surface chemistry of this rare-earth oxoborate.  相似文献   

18.
Half-life measurements show that the lowest high-j state in 141Ce, 143Nd, 145Sm, and 147Gd, earlier assigned as an h9/2 fragment, is an i13/2 single-neutron excitation which previously was thought to lie above 3 MeV in the N = 83 nuclei.  相似文献   

19.
A systematic investigation of crystallographic and intrinsic magnetic properties of the hydrides R3Fe29−xVxHy (R=Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed in this work. The lattice constants , and c and the unit cell volume of R3Fe29−xVxHy decrease with increasing rare-earth atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Hydrogenation results in regular anisotropic expansions along the a-, b-, and c-axes in this series of hydrides. Abnormal crystallographic and magnetic properties of Ce3Fe27.5V1.5H6.5, like Ce3Fe27.5V1.5, suggest that the Ce ion is non-triply ionized. Hydrogenation leads to the increase in both Curie temperature for all the compounds and in the saturation magnetization at 4.2 K and RT for R3Fe29−xVx with R=Y, Ce, Nd, Sm, Gd, and Dy, except for Tb. Hydrogenation also leads to a decrease in the anisotropy field at 4.2 K and RT for R3Fe29−xVx with R=Y, Ce, Nd, Gd, Tb, and Dy, except for Sm. The Ce3Fe27.5V1.5 and Gd3Fe28.4V0.6 show the larger storage of hydrogen with y=6.5 and 6.9 in these hydrides.  相似文献   

20.
We report measurements of magnetic, thermal and transport properties of single crystals of rare-earth dibismites RBi2 (R=La–Nd, Sm), grown via self-flux method. All compounds are good metals, and those with magnetic ions order antiferromagnetically at low temperatures. Ce, Pr and Sm members of the series show single magnetic transition whereas NdBi2 most likely exhibits two magnetic transitions. Significant magnetic anisotropy and a series of metamagnetic transitions in fields up to 55 kG are found in PrBi2. Ordering temperatures range from 3 K to just above 16 K and they scale well with the de Gennes factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号