首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to recent experimental findings the leading pairing resides in the nodal (FS arcs) momentum region of hole doped cuprates. The pseudogap is an antinodal feature. A corresponding multiband model of the electronic background evolving with doping serves the usually presented phase diagram. The pairing is due by the pair-transfer between overlapping nodal defect (polaron) band and the itinerant band. A bare gap vanishing with extended doping between the antinodal defect subband and the itinerant band top leads to the formation of the pseudogap as a perturbative band-structure effect. The calculated behaviour of two superconducting gaps and of the pseudogap on the whole doping scale is in qualitative agreement with the observations. Arguments to include cuprates into the class of multiband-multigap superconductors are given by these results.  相似文献   

2.
The momentum dependence of the low energy quasiparticle spectrum and the related Bogoliubov angle in cuprate superconductors are studied within the kinetic energy driven superconducting mechanism. By calculation of the ratio of the low energy quasiparticle spectra at positive and negative energies, it is shown that the Bogoliubov angle increases monotonically across the Fermi crossing point. The results also show that the superconducting coherence of the low energy quasiparticle peak is well described by a simple d-wave Bardeen-Cooper-Schrieffer formalism, although the pairing mechanism is driven by the kinetic energy by exchanging spin excitations.  相似文献   

3.
The issue of how superconductivity originate in the CuO2 planes believed to be crucial to understanding the high Tc superconducting cuprates is still an going debate. In the wake of recent experimental observations of the Zhang-Rice singlet (ZRS), its formation and propagation need to be revisited especially by using a simple approach almost at a phenomenological level. Within a highly simplified correlated variational approach (HSCVA) in this Letter, a new formation of the ZRS as constituting the ground state of a single-band t-J model of the CuO2 planes is developed. This formation is then used to demonstrate how the ZRS can be propagated as a probable Cooper channel in the CuO2 planes.  相似文献   

4.
The electron-phonon coupling constant in two-dimensional cuprate high temperature superconductors has been determined by the ultrasonic method. The electron-phonon coupling constant in the Van Hove scenario was found to increase with transition temperature Tc. is in the range of 0.025-0.060 which is 10-100 times smaller than the conventional three-dimensional Bardeen-Cooper-Schrieffer coupling constant. The characteristic Debye temperature θD does not correlate with Tc. These findings show that the interplay between the Debye frequency and electron-phonon coupling in the two-dimensional system and their variations have a combined effect in governing the transition temperature.  相似文献   

5.
This is a summary of a review article appearing in Reviews of Modern Physics, July 2003. The ground state of the cuprate superconductors is described using the paradigm of competing orders. This approach has led to numerous predictions, some of which have been tested in recent nanoscale experiments.  相似文献   

6.
A recent report on ARPES on insulating , compared to previous data from and Dy-doped , sheds new light on the origin of the anisotropic pseudogap observed in the normal state of underdoped cuprate oxides. The energy dispersion of the insulator is attributed to strong AF correlations enhanced by the diagonal hopping between magnetic sites, which is progressively deformed by the possibility of nearest neighbour hopping, that increases with hole doping. Received 9 April 1999  相似文献   

7.
A simple model to describe the energetic phase diagram of electron-doped cuprate superconductor is developed. Interband pairing operates between the UHB and the defect states created by doping and supplied by both extincting HB-s. Two defect subbands correspond to the (π,0) and (π/2,π/2) momentum regions. Extended doping quenches the bare normal state gaps (pseudogaps). Maximal transition temperature corresponds to overlapping bands ensemble intersected by the chemical potential. Illustrative results for Tc, pseudo- and superconducting gaps are calculated on the whole doping scale. Major characteristic features on the phase diagram are reproduced. Anticipated manifestation of gaps doping dynamics is discussed.  相似文献   

8.
We analyze the problem of infrared optical absorption in a clean layered London superconductor in the vicinity of the gap =2. We conclude that absorption of light with wave vectorqc is enhanced over ordinary Drude absorption (qc) due to resonance absorption (Landau damping). Experimental absorption studies with qc might therefore improve chances to observe a superconducting gap in the high-T c superconductors.  相似文献   

9.
We solve a self-consistent equation for the d-wave superconducting gap and the magnetization in the mean-field approximation, study the Zeeman effects on the thermodynamic potential of d-wave superconductor (S) and coherent quantum transport in normal-metal (N)/d-wave S/N double tunnel junctions. Taking simultaneously into account the electron-injected current from one N electrode and the hole-injected current from the other N electrode, we derive a general formula for the differential conductance in a N/d-wave S/N system under a Zeeman magnetic field on the d-wave S. It is found that oscillations of all quasiparticle transport coefficients and differential conductance with the bias voltage and the thickness of the d-wave S depend to a great extent on the crystal orientation of the d-wave S. In the N/d-wave S/N junctions, the Zeeman magnetic field can lead to the Zeeman splitting of conductance peaks, and the temperature can reduce the coherent effect.  相似文献   

10.
Special solutions of the Hartree-Fock (HF) problem for Coulomb interacting electrons described by a simple model of the Cu-O planes in La2CuO4 are presented. One of the mean field states obtained, is able to predict some of the most interesting properties of this material, such as its insulator character and the antiferromagnetic order. The natural appearance of pseudogaps in some states of this material is also indicated by another of the HF states obtained. These surprising results follow after eliminating spin and crystal symmetry restrictions usually imposed on the single particle HF orbitals, by employing the rotational invariant formulation of the HF scheme originally introduced by Dirac. Therefore, it is exemplified here, how up to know considered strong correlation effects, can be described by improving the HF solution of the considered system. In other words, it has been argued, that defining correlation effects as the ones shown by the system and not predicted by the HF best (lowest energy) solution, allows to explain important, up to know considered as strong correlation properties, as simple mean field ones. The discussion also helps to clarify the role of the antiferromagnetism and pseudogaps in the physical properties of the HTSC materials and indicates a promising way to start conciliating the Mott and Slater pictures in the physics of the transition metal oxides and other strongly correlated electron systems.  相似文献   

11.
The thermodynamic stability of odd-frequency pairing states is investigated within an Eliashberg-type framework. We find the rigorous result that in the weak coupling limit a continuous transition from the normal state to a spatially homogeneous odd-in-ω superconducting state is forbidden, irrespective of details of the pairing interaction and of the spin symmetry of the gap function. For isotropic systems, it is shown that the inclusion of strong coupling corrections does not invalidate this result. We discuss a few scenarios that might escape these thermodynamic constraints and permit stable odd-frequency pairing states.  相似文献   

12.
In this paper a mean-field theory for the spin-liquid paramagnetic non-superconducting phase of the p- and n-type high-Tc cuprates is developed. This theory applied to the effective t-t'-t′′-J* model with the ab initio calculated parameters and with the three-site correlated hoppings. The static spin-spin and kinematic correlation functions beyond Hubbard-I approximation are calculated self-consistently. The evolution of the Fermi surface and band dispersion is obtained for the wide range of doping concentrations x. For p-type systems the three different types of behavior are found and the transitions between these types are accompanied by the changes in the Fermi surface topology. Thus a quantum phase transitions take place at x = 0.15 and at x = 0.23.Due to the different Fermi surface topology we found for n-type cuprates only one quantum critical concentration, x = 0.2. The calculated doping dependence of the nodal Fermi velocity and the effective mass are in good agreement with the experimental data.  相似文献   

13.
We study the equilibrium dynamics of the relative phase in a superconducting Josephson link taking into account the quantum fluctuations of the electromagnetic vacuum. The photons act as a superohmic heat bath on the relative Cooper pair number and thus, indirectly, on the macroscopic phase difference φ. This leads to an enhancement of the mean square 〈φ2〉 that adds to the spread due to the Coulomb interaction carried by the longitudinal electromagnetic field. We also include the interaction with the electronic degrees of freedom due to quasiparticle tunneling, which couple to the phase and only indirectly to the particle number. The simultaneous inclusion of both the radiation field fluctuations and quasiparticle tunneling leads to a novel type of particle-bath Hamiltonian in which the quantum particle couples through its position and momentum to two independent bosonic heat baths. We study the interplay between the two mechanisms in the present context and find interference contributions to the quantum fluctuations of the phase. We explore the observability of the QED effects discussed here.  相似文献   

14.
The pairing due to electron-phonon and exchange interaction in the two-band Emery model is considered. The Emery model is reduced to an effective singlet-triplet problem. The Eliashberg-equations are formulated in terms of Hubbard operators for the singlet band. The dependence of the critical temperatureT c on the number of holesn in the doped CuO2 plane has been calculated. The electron-phonon coupling gives rise to s-wave pairing with a maximum inT c atn1.2. It corresponds to a maximum in the density of states for a doping value ofn=1.24. The anisotropic electron-electron coupling due to the exchange interaction produces extended s-wave pairing with a maximum atn1.05 and d-wave pairing with a maximum atn1.2.  相似文献   

15.
Phase fluctuations of a d-wave superconducting order parameter are theoretically studied in the context of high-Tc cuprates. We consider an extended t-J model describing electrons in a layer which also contains long-range Coulomb interactions. The constraint of having at most singly occupied sites is enforced by an additional Hubbard term. The Heisenberg interaction is decoupled by a d-wave order parameter in the particle-particle channel. Assuming first that the equilibrium state has long-range phase order, the effective action is derived perturbatively for small fluctuations within a path integral formalism, in the presence of the Coulomb and Hubbard interaction terms. In a second step, a more general derivation of is performed in terms of a gradient expansion which only assumes that the gradients of the order parameter are small whereas the value of the phase may be large. We show that in the phase-only approximation the resulting reduces in leading order in the field gradients to the perturbative one which thus allows to treat also the case without long-range phase order or vortices. Our result generalizes previous expressions for to the case of interacting electrons, is explicitly gauge invariant, and avoids problematic singular gauge transformations.  相似文献   

16.
In a first step we use an ab initio rigid-ion model (RIM) to calculate the lattice parameters and the phonon dispersion of the infinite-layer compounds CaCuO2, SrCuO2, and BaCuO2. We find an increase of both the planar and the axial lattice constant when going from CaCuO2 through SrCuO2 to BaCuO2. The rate of increase of the planar lattice constant with respect to the alkaline-earth ionic radius is calculated to be smaller for the replacement of Sr by Ba than for the replacement of Ca by Sr. Both results are in accordance with experimental studies. The phonon dispersion in the RIM exhibits several unstable branches mainly related to axial displacements of the oxygens, indicating the tendency of the crystal to reconstruct in a lower-symmetry structure. The structural stability increases, however, towards BaCuO2; simultaneously, the maximum phonon frequency decreases. AnA 2u zone-center mode with very large LO-TO-splitting exists in all three compounds (ferroelectric mode). In a second step charge fluctuations (CF) are taken into account at the copper- and oxygen ions, using SrCuO2 as an example. Due to the vanishing of the ferroelectric split a branch with very steep dispersion forms in the [001] direction in the metallic phase whereas the zone-centerA 2u modes are unchanged in the insulating phase because of the two-dimensional (2D) electronic structure assumed. Characteristic nonlocal electron-phonon-interaction effects are associated with theZ-point Sr-axial-breathing mode: CF of uniform sign within the CuO planes but alternating sign in consecutive planes do occur in the metalic phase. This interplane charge transfer is, on the other hand, suppressed in the insulating phase due to the 2D electronic structure assumed. Instead, large induced site-potential changes emerge in this case.  相似文献   

17.
Some new members of a ruthenocuprate(2212) series have been synthesized by Mn substitution for Ru in Gd1.4Ce0.6Sr2RuCu2O10. Characterization by x-ray diffraction (XRD) phase analysis has been carried out. Changes in structural features on substitution, including a significant change in lattice parameter for a very low substitution level, have been observed. Four-probe resistivity studies indicate the coexistence of superconductivity and magnetism for the pristine compound and a semiconductor-like upturn in resistivity and the absence of superconductivity even for very low levels of Mn substitution. AC susceptibility measurements show a progressive suppression of the magnetic transition temperature as well as a smearing of the magnetic transition as a function of Mn substitution. Possible reasons for the absence of superconductivity have been discussed.  相似文献   

18.
Andreev bound states at the surface of superconductors are expected for any pair potential showing a sign change in different k-directions with their spectral weight depending on the relative orientation of the surface and the pair potential. We report on the observation of Andreev bound states in high temperature superconductors (HTS) employing tunneling spectroscopy on bicrystal grain boundary Josephson junctions (GBJs). The tunneling spectra were studied as a function of temperature and applied magnetic field. The tunneling spectra of GBJ formed by YBa2Cu3O (YBCO), Bi2Sr2CaCu2O(BSCCO), and La1.85Sr0.15CuO4 (LSCO) show a pronounced zero bias conductance peak that can be interpreted in terms of Andreev bound states at zero energy that are expected at the surface of HTS having a d-wave symmetry of the order parameter. In contrast, for the most likely s-wave HTS Nd1.85Ce0.15CuO4-y (NCCO) no zero bias conductance peak was observed. Applying a magnetic field results in a shift of spectral weight from zero to finite energy. This shift is found to depend nonlinearly on the applied magnetic field. Further consequences of the Andreev bound states are discussed and experimental evidence for anomalous Meissner currents is presented. Received: 17 February 1998 / Revised: 27 April 1998 / Accepted: 23 June 1998  相似文献   

19.
20.
A first analytic calculation has been done in Nernst constant on the basis of the hypothesis that the normal state of the underdoped cuprate is at the two-channel Kondo fixed point of the crystal. Its temperature variation is found to obey a universal scaling relation, which can be checked experimentally. It has the maximum in the pseudogap regime, which has been already found experimentally. We present argument and evidence that in the doped and moderately disordered cuprate the two-channel fixed point is stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号