首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Use of surfactants like antimony in MOCVD growth enables novel growth regimes for quantum dots (QDs). The quantum dot ensemble luminescence no longer appears as a single inhomogeneously broadened peak but shows a multi-modal structure. Quantum dot subensembles are forming which differ in height by exactly one monolayer. For the first time the systematic dependence of excitonic properties on quantum dot size and shape can be investigated in detail. Both biexcitonic binding energy and excitonic fine-structure splitting vary from large positive through zero to negative values. Correlation and piezoelectric effects explain the observations.  相似文献   

2.
Localization of exciton wavefunctions in self-assembled quantum dots (QDs) has been investigated using CdSe QDs embedded in ZnMnSe. This system was chosen so as to make use of the giant Zeeman splitting in the diluted magnetic semiconductor (DMS) ZnMnSe, which enables one to map how the exciton wavefunction is distributed between the QDs and the surrounding matrix. Two series of CdSe QDs in ZnMnSe were prepared for this investigation by molecular beam epitaxy (MBE), either by varying the CdSe coverage while keeping a constant Mn concentration in ZnMnSe; or by varying the Mn concentration in the matrix while maintaining a constant CdSe coverage. Photoluminescence (PL) experiments show a systematic evolution of the CdSe QDs with increasing CdSe coverage; and also reveal the role of Mn in nucleating (“seeding”) the self-assembly of the QDs. By simultaneously measuring the Zeeman shifts of the PL peaks from both the CdSe QDs and their ZnMnSe matrix, we are able to extract information on exciton localization in the QDs and its dependence on the degree of development of the self-assembled CdSe QDs with increasing CdSe coverage.  相似文献   

3.
B. Solís 《Physics letters. A》2008,372(26):4736-4739
In this Letter we study the Friedel phase of the electron transport in two different systems of quantum dots which exhibit bound states in the continuum (BIC). The Friedel phase jumps abruptly in the energies of the BICs, which is associated to the vanishing width of these states, as shown by Friedrich and Wintgen in [H. Friedrich, D. Wintgen, Phys. Rev. A 31 (1985) 3964]. This odd behavior of the Friedel phase has consequences in the charge through the Friedel sum rule. Namely, if the energy of the BIC drops under the Fermi energy the charge changes abruptly in a unity. We show that this behavior closely relates to discontinuities in the conductance predicted for interacting quantum dot systems.  相似文献   

4.
5.
We solve the problem of a few electrons in a two-dimensional harmonic confinement using a quantum mechanical exact diagonalization technique, on the one hand, and classical mechanics, on the other. The quantitative agreement between the results of these two calculations suggests that, at low filling factors, all the low energy excitations of a quantum Hall liquid are classical vibrations of localized electrons. The Coriolis force plays a dominant role in determining the classical vibration frequencies.  相似文献   

6.
We report a photoluminescence (PL) energy red-shift of single quantum dots (QDs) by applying an in-plane compressive uniaxial stress along the [110] direction at a liquid nitrogen temperature. Uniaxial stress has an effect not only on the confinement potential in the growth direction which results in the PL shift, but also on the cylindrical symmetry of QDs which can be reflected by the change of the full width at half maximum of PL peak. This implies that uniaxial stress has an important role in tuning PL energy and fine structure splitting of QDs.  相似文献   

7.
8.
Electron tunneling through a double quantum-dot molecule, in the Kondo regime, under the effect of a magnetic field and an applied voltage, is studied. This system possesses a complex response to the applied fields characterized by a tristable solution for the conductance. The different nature of the solutions are studied in and out thermodynamical equilibrium. It is shown that the interdot coupling and the fields can be used to control the region of multistability. The mean-field slave-boson formalism is used to obtain the solution for the problem.  相似文献   

9.
We introduce a theoretical formalism describing a wide class of ‘Which Path’ experiments in mesoscopic/nanoscopic transport. The physical system involves a mesoscopic interferometer (e.g. an Aharonov-Bohm ring with embedded dots or a side-coupled quantum dot) which is electrostatically coupled to a nearby quantum point constriction. Due to the charge sensing effect the latter acts as a charge detector. Therefore the interference pattern can be monitored indirectly by looking at the current characteristics of the detector as shown in the experimental work of Buks et al. [E. Buks, R. Schuster, M. Heiblum, D. Mahalu, V. Umansky, Nature (London) 391 (1998) 871]. We use the non-equilibrium Green-Keldysh formalism and a second order perturbative treatment of the Coulomb interaction in order to compute the relevant transport properties. It is shown that in the presence of the Coulomb interaction the current through the detector exhibits oscillations as a function of the magnetic field applied on a single-dot AB interferometer. We also discuss the dependence of the visibility of the Aharonov-Bohm oscillations on the gate potential applied to the dot.  相似文献   

10.
Yüksel Ayaz 《Physics letters. A》2009,373(43):3982-3988
We study nonlocality effects of a bulk plasmalike dielectric medium on the plasmon spectrum of a one-dimensional (1D) quantum wire superlattice in interaction with the 3D nonlocal host bulk plasma, by carrying out a closed-form analytic determination of the inverse dielectric function κ for the joint nanostructure system within the random phase approximation (RPA), in which we treat nonlocality of the 1D superlattice in the RPA and that of the bulk medium in the hydrodynamic model. By examining the frequency poles of κ (i.e., the dispersions relations), we show analytically that coupled plasmon modes of the interacting 1D superlattice-3D nonlocal host are damped in high frequencies (damping is pronounced near resonance region) and that nonlocality of the host medium introduces nonlocal low frequency (real) modes into the spectrum, which have cutoff frequencies for finite wave vector values. In order to describe the impact of nonlocality effects more clearly, we also examine the spectrum numerically.  相似文献   

11.
By employing non-equilibrium Green's function method, the mesoscopic Fano effect modulated by Rashba spin–orbit (SO) coupling and external magnetic field has been elucidated for electron transport through a hybrid system composed of a quantum dot (QD) and an Aharonov–Bohm (AB) ring. The results show that the orientation of the Fano line shape is modulated by the Rashba spin–orbit interaction kRLkRL variation, which reveals that the Fano parameter q will be extended to a complex number, although the system maintains time-reversal symmetry (TRS) under the Rashba SO interaction. Furthermore, it is shown that the modulation of the external magnetic field, which is applied not only inside the frame, but also on the QD, leads to the Fano resonance split due to Zeeman effect, which indicates that the hybrid is an ideal candidate for the spin readout device.  相似文献   

12.
Properties of excitons in vertically coupled GaAs/AlGaAs quantum dots were investigated using the variational method within the envelope function and effective mass approximations. It was found that when the thickness of the spacer layer becomes less than about one exciton Bohr radius, both the exciton binding energy and the fundamental optical transition energy are reduced compared to those in isolated quantum dots. This is a result of increased space extension of exciton due to the penetration of carrier wave functions into the spacer layer and corresponding reduction in confinement energy which dominates over the Coulomb interaction between the electron and the hole.  相似文献   

13.
We present numerical results for the low-lying spectra of an electron confined in a magnetic quantum ring where the magnetic fields are zero inside the ring and constant elsewhere. Low-lying spectra for both on-center Coulomb acceptor and donor impurities, with qualitative aspects different from those without impurities doped, are also discussed.  相似文献   

14.
Exact many-body methods as well as current-spin-density functional theory are used to study the magnetism and electron localization in two-dimensional quantum dots and quasi-one-dimensional quantum rings. Predictions of broken-symmetry solutions within the density functional model are confirmed by exact configuration interaction (CI) calculations: In a quantum ring the electrons localize to form an antiferromagnetic chain which can be described with a simple model Hamiltonian. In a quantum dot the magnetic field localizes the electrons as predicted with the density functional approach. Received 5 December 2000  相似文献   

15.
He Gao 《Physics letters. A》2010,374(5):770-777
The commensurate photon-irradiated mesoscopic transport in a strongly correlated quantum dot (QD) embedded Aharonov-Bohm (AB) interferometer has been investigated. We focus our investigation on the dynamic Kondo and Fano cooperated effect affected by the double commensurate MWFs with q=ω2/ω1 being an arbitrary integer, where ω1 and ω2 are the two frequencies of the fields. The general tunneling current formula is derived by employing the nonequilibrium Green's function technique, and the different photon absorption and emission processes induced nonlinear properties have been studied to compare with the single-field system where q=0. Our numerical calculations are performed for the special cases with two commensurate fields possessing q=1,2. The Kondo peak can be suppressed to be a Kondo valley for the case where the commensurate number q=1, and the Fano asymmetric structure exhibits in the differential conductance quite evidently. Different commensurate number q contributes different photon absorption and emission effects. However, the conductance for the case of q=2 possesses more peaks and heavier asymmetric structure than the situations of q=0,1. The enhancement of satellite peaks behaves quite differently for the two cases with q=1, and q=2. The asymmetric peak-valley structure is adjusted by the gate voltage, commensurate MWFs, AB flux, source-drain bias, and non-resonant tunneling strength to form novel Fano and Kondo resonant tunneling.  相似文献   

16.
Based on the effective-mass approximation, we have calculated the donor binding energy of a hydrogenic impurity in zinc-blende (ZB) GaN/AlN coupled quantum dots (QDs) using a variational method. Numerical results show that the donor binding energy is highly dependent on the impurity position and coupled QDs structural parameters. The donor binding energy is largest when the impurity is located at the center of quantum dot. When the impurity is located at the interdot barrier edge, the donor binding energy has a minimum value with increasing the interdot barrier width.  相似文献   

17.
The lowest excitations of a repulsively interacting few particle system are investigated within correlated “pocket state” basis functions. For long range interaction and non-isotropic confining potentials the method becomes exact, in the limit of large mean inter-particle distancesr s. The multiplet structure of the many-electron energy levels is explained and the ratios δ between the lowest excitation energies, which are related to the electron spin, are determined quantitatively using group theoretical means. The δ are independent of the detailed form of the inter-particle repulsion and of sufficiently larger s. The obtained δ-values are confirmed by available numerical data. The method is applied to 1D and 2D quantum dots.  相似文献   

18.
孙普男 《中国物理快报》2006,23(8):2217-2220
Electronic tunnelling through a one-dimensional quantum dot chain is theoretically studied, when two leads couple to the individual component quantum dots of the chain arbitrarily. If there are some dangling quantum dots in the chain outside the leads, the electron tunnelling through the quantum dot chain is wholly forbidden while the energy of the incident electron is just equal to the molecular energy levels of the dangling quantum dots, which is known as the antiresonance effect. In addition, the influence of electron interaction on the antiresonance effect is discussed within the Hartree-Fock approximation.  相似文献   

19.
We present a theoretical analysis of four-wave mixing in coupled quantum dots subject to inhomogeneous broadening. For the biexciton transitions, a clear signature of interdot-coupling appears in the spectra. The possibility of experimental observation is discussed.  相似文献   

20.
Electron tunneling through a double quantum-dot molecule side attached to a quantum wire, in the Kondo regime, is studied. The mean-field finite-U slave-boson formalism is used to obtain the solution of the problem. We found conductance cancellations when the molecular energies of the side attached double quantum-dot cross the Fermi energy. We investigate the many body molecular Kondo states and its interplay with the inter-dot antiferromagnetic correlation as a function of the parameters of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号