首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Based on the entangled state representation and a bosonic phase operator formalism, we tackle with Cooperpair number-phase quantization for the inductance coupling circuit including Josephson junctions, and then investigate how Josephson current equations change due to the presence of the coupling inductance and obtain bosonic operator Faraday formula, as well as the corresponding number-phase uncertainty relation.  相似文献   

2.
By introducing the entangled state representation, parallel LC circuit including a 3osephson junction equation associated with the modification of the motion equation. the Cooper-pair number-phase quantization of the mesoscopic is realized. In the Heisenberg picture, the modified Josephson Faraday equation about the inductance is deduced from the  相似文献   

3.
By introducing the entangled state representation and Feynman assumption that 'electron pairs are bosons, ..., a bound pair acts as a Bose particle ', we construct an operator Hamiltonian for a mesoscopic inductance-capacitance (LC) circuit including a Josephson junction, then we use the Heisenberg equation of motion to derive the current equation and the voltage equation across the inductance as well as across the Josephson junction. The result manifestly shows how the junction voltage is affected by the capacitance coupling. In this way the Cooper-pair number-phase quantization for this system is completed.  相似文献   

4.
The electronic band structure of a zigzag-type carbon nanotube has been computed by using the tight-binding approximation method in the framework of SSH Model Hamiltonian modified by the inclusion of two Lagrange multipliers instead of one. This modification yielded an electronic band structure consistent with the experimental reports that an infinite (3,0) zigzag-type single-walled carbon nanotubes displays a metallic behaviour.  相似文献   

5.
The quantum conductance of the quantum dots (QDs) made of two kinds of primary carbon nanotubes (CNTs), i.e., armchair and zigzag CNTs, threaded by an axial magnetic field, has been studied by using the tight binding approximation and constant interaction model. It is found that under increasing axial magnetic field, each conductance shell of the zigzag CNT-QDs could split into two groups with each group of two peaks moving up or down, respectively. And the up- and down-moving two peaks would re-group with other two peaks, down- and up-moving, in the neighboring shell, forming a new four-peak shell, and then re-splitting, re-grouping again due to the Aharonov-Bohm effect, which is in agreement with those of experiments. But, in contrast, the conductance shells of the armchair CNT-QDs do not split by the magnetic field. Our subsequent theoretical studies show further that the above phenomena, i.e., the conductance shell-splitting, re-grouping, and re-splitting again with increasing the magnetic field exist in all the CNT-QDs except for the armchair one.  相似文献   

6.
We solve a self-consistent equation for the d-wave superconducting gap and the effective exchange field in the mean-field approximation, study the Zeeman effects on the d-wave superconducting gap and thermodynamic potential. The Josephson currents in the d-wave superconductor (S)/insulating layer (I)/d-wave S junction are calculated as a function of the temperature, exchange field, and insulating barrier strength under a Zeeman magnetic field on the two d-wave Ss. It is found that the Josephson critical currents in d-wave S/d-wave S junction depend to a great extent on the relative orientation of the effective exchange field of the two S electrodes, and the crystal orientation of the d-wave S. The exchange field can under certain conditions enhance the Josephson critical current in a d-wave S/I/d-wave S junction.  相似文献   

7.
We solve a self-consistent equation for the d-wave superconducting gap and the magnetization in the mean-field approximation, study the Zeeman effects on the thermodynamic potential of d-wave superconductor (S) and coherent quantum transport in normal-metal (N)/d-wave S/N double tunnel junctions. Taking simultaneously into account the electron-injected current from one N electrode and the hole-injected current from the other N electrode, we derive a general formula for the differential conductance in a N/d-wave S/N system under a Zeeman magnetic field on the d-wave S. It is found that oscillations of all quasiparticle transport coefficients and differential conductance with the bias voltage and the thickness of the d-wave S depend to a great extent on the crystal orientation of the d-wave S. In the N/d-wave S/N junctions, the Zeeman magnetic field can lead to the Zeeman splitting of conductance peaks, and the temperature can reduce the coherent effect.  相似文献   

8.
We have studied numerically a rectifying effect in an underdamped Josephson junction ratchet array driven by dc and ac current. The array consists of both alternating potential barriers and alternating inter-capacitances along the direction of vortex flow. The guide banks of high critical currents are assigned for all the longitudinal junctions to prevent the percolative pattern of vortex motion. In some junction parameters, we see a rectifying effect which indicates a finite value of the time-averaged voltage at zero dc bias. The directional dependence of the vortex motion becomes fairly large when the junction parameters lie in an optimal range which gives rise to a Shapiro step at zero dc bias. Such a rectifying effect survives for small thermal fluctuation, but eventually disappear beyond a certain critical temperature.  相似文献   

9.
Role of self-inductance in superconducting quantum interference device (SQUID) charge qubit is considered. It is found that when an SQUID charge qubit is coupled to a quantum LC resonator, the SQUID voltage operator equation is modified in accompanying with the modification of operator Faraday equation describing the inductance. It is shown that when the extra energy is applied to the junction, the mean phase will be squeezed according to a damping factor.  相似文献   

10.
The effect of optical phonons scattering on electronic current has been studied in metallic carbon nanotubes. The current has been calculated self-consistently by total voltage equation and the heat transport equation. The total voltage equation consists of three terms, optical phonons collision term, acoustic phonon scattering term, and contact resistance one. Including LO, A1, and E1(2) phonons in collision term, we can reproduce the experimental I-V curves displaying negative differential conductance. Furthermore, one conclusion is made that the more optical phonons are scattered by electron, the lower current is in metallic carbon nanotubes. By comparing the current under different conditions, we can make another conclusion that there should be nonequilibrium optical phonons under high bias in spite of whether the metallic nanotube is suspended or not. This result agrees well with the others [M. Lazzeri, F. Mauri, Phys. Rev. B 73 (2006) 165419]. Based on these results, we do not only explain the experiment, but also propose to design a heat-controlling electronic transistor with metallic carbon nanotubes as its channel, in which the electronic current can be controlled by optical phonons.  相似文献   

11.
The collective resonant photoresponse in Si/SiGe structures with a 2DEG under microwave radiation is reported for the first time. The application of microwave radiation of various frequencies results in resonant photoconductivity at magnetic field values that are systematically lower than expected for the cyclotron resonance (CR) in an infinitely large two-dimensional electron system. The analysis of the data shows that the observed microwave radiation induced response is dominated by plasmon excitations.  相似文献   

12.
Electrical transport measurements on single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
We review transport measurements on single-walled carbon nanotubes contacted by metal electrodes. At room temperature some devices show transistor action similar to that of p-channel field effect transistors, while others behave as gate-voltage independent wires. At low temperatures transport is usually dominated by Coulomb blockade. In this regime the quantum eigenstates of the finite-length tubes can be studied. At higher temperatures power law behaviour is observed for the temperature and bias dependence of the conductance. This is consistent with tunneling into a one-dimensional Luttinger liquid in a nanotube. We also discuss recent developments in contacting nanotubes which should soon allow study of their intrinsic transport properties. Received: 17 May 1999 / Accepted 18 May 1999 / Published online: 4 August 1999  相似文献   

13.
The dynamics of a Josephson junction array shunted by a common resistance are investigated by using numerical methods. Coexistence of phase locking and chaos is observed in the system when the resistively and capacitively shunted junction model is adopted. The corresponding parameter ranges for phase locking and chaos are presented. When there are three resistively shunted junctions in the array, chaos is found for the first time and the parameter range for chaos is also presented. According to the theory of Chernikov and Schmidt, when there are four or more junctions in the array, the system exhibits chaotic behavior. Our results indicate that the theory of Chernikov and Schmidt is not exactly appropriate.  相似文献   

14.
Ju Peng 《Physics letters. A》2008,372(21):3878-3881
We theoretically report a nonlocal Andreev reflection in an Aharonov-Bohm interferometer, which is a three-terminal normal metal/superconductor (NS) mesoscopic hybrid system. It is found that this nonlocal Andreev reflection is sensitive to the systematic parameters, such as the bias voltages, the quantum dot levels, and the external magnetic flux. If we set the chemical potential of one normal metal lead equal to zero, the electronic current in the lead results from two competing processes: the quasiparticle transmission and nonlocal Andreev reflection. The appearance of zero electronic current signals unambiguously the existence of this nonlocal Andreev reflection.  相似文献   

15.
The dependence of the interwall conductance on distance between walls and relative positions of walls are calculated at the low voltage by Bardeen method for (n,n)@(2n,2n) double-walled carbon nanotubes (DWCNTs) with n=5,6,…,10. The calculations show that interwall conductance does not depend on temperature (for T?500 K) and current-voltage characteristic is linear. The conductance decreases by 6 orders of magnitude when the interwall distance is doubled. Thus, depending on the interwall distance, DWCNTs can be used as temperature stable nanoresistors or nanocapacitors.  相似文献   

16.
The electrical conduction behavior of single-walled carbon nanotube networks was investigated. Although the nanotubes were entangled with each other and multiple junctions were formed within the network, they showed an apparently strong Tomonaga-Luttinger-liquid (TL-liquid) character, which seemed to be attributable to their quasi one-dimensional structures. The appearance of the TL-liquid behavior was induced by removing impurities in the junctions. This fact indicates that the TL-liquid can be observed in the entangled SWNTs after the purification.  相似文献   

17.
We study the equilibrium dynamics of the relative phase in a superconducting Josephson link taking into account the quantum fluctuations of the electromagnetic vacuum. The photons act as a superohmic heat bath on the relative Cooper pair number and thus, indirectly, on the macroscopic phase difference φ. This leads to an enhancement of the mean square 〈φ2〉 that adds to the spread due to the Coulomb interaction carried by the longitudinal electromagnetic field. We also include the interaction with the electronic degrees of freedom due to quasiparticle tunneling, which couple to the phase and only indirectly to the particle number. The simultaneous inclusion of both the radiation field fluctuations and quasiparticle tunneling leads to a novel type of particle-bath Hamiltonian in which the quantum particle couples through its position and momentum to two independent bosonic heat baths. We study the interplay between the two mechanisms in the present context and find interference contributions to the quantum fluctuations of the phase. We explore the observability of the QED effects discussed here.  相似文献   

18.
The effects of Ar microwave plasma treatment on field emission properties of the printed carbon nanotubes (CNTs) cathode films using Ag nano-particles as binder were investigated. The field emission J-E characteristics were measured at varied plasma treatment time. Significant improvement in emission current density, emission stability and uniformity were achieved for the Ar treated CNTs films, even though the plasma treatment increased the turn on electric field slightly. High-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy revealed the microstructural changes of CNTs after the plasma treatment. The improved field emission properties of CNTs film can be attributed to the generation of a high density of structural defects after treatment, which increased greatly the possible emission active sites. Besides, the formation of the sharpened and open-ended CNTs tips is all helpful for improving the field emission properties of the treated CNTs.  相似文献   

19.
The effect of an array of ferromagnetic nanoparticles on the field-dependent critical current of the short overlap Josephson junction is experimentally studied. Large reversible variations of the maximum critical current are observed depending on the magnetic state of the particles. The pronounced commensurability effects are detected which are proved by the additional peaks of magnetic field induced diffraction pattern.  相似文献   

20.
Arafa H. Aly 《中国物理快报》2008,25(12):4399-4401
We present the Peltier coefficient and thermal transport in quantum point contact (QPC), under the influence of external fields and different temperatures. Also we obtain the oscillations of the Peltier coefficient in external fields. Numerical calculations of the Peltier coefficient are performed at different applied voltages, amplitudes and temperatures. The obtained results are consistent with the experimental data in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号