首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spinel CoFe2O4 nanowire arrays were synthesized in nanopores of anodic aluminum oxide (AAO) template using aqueous solution of cobalt and iron nitrates as precursor. The precursor was filled into the nanopores by vacuum impregnation. After heat treatment, it transformed to spinel CoFe2O4 nanowires. The structure, morphology and magnetic properties of the sample were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results indicate that the nanowire arrays are compact. And the individual nanowires have a high aspect ratio, which are about 80 nm in diameter and 10 μm in length. The nanowires are polycrystalline spinel phase. Magnetic measurements indicate that the nanowire arrays are nearly magnetic isotropic. The reason is briefly discussed. Moreover, the temperature dependence of the coercive force of the nanowire arrays was studied.  相似文献   

2.
NdFeNbB with the additions of Dy2O3 and Sn permanent magnets have been attained by means of powder-blending technique, and their magnetic properties, temperature performance and microstructure were studied in this paper. The addition of just 2.0 wt% Dy2O3 or 0.3 wt% Sn proved to be very effective in improving the permanent magnetic properties of NdFeNbB magnets. Dy2O3 additions result in the increase in the Hci and temperature dependence due to the increase of Tc, formation of (NdDy)-rich phase and grain refinement of Φ phase. This improvement of the coercivity stability of the magnets from the addition of Sn is attributed to the smoothing effect of the Sn addition at the grain boundaries. The magnetic properties, the temperature dependence and Curie temperature of NdFeNbB with Dy2O3 and Sn combined addition were found to be considerably improved. From the X-ray diffraction, SEM-EDAX studies and the thermo-magnetic study, the improved properties due to the solution of Dy and Sn to the Φ phase, the reduced Neff and the smaller Φ phase.  相似文献   

3.
Zn1−xNixFe2O4 ferrite nanoparticles were prepared by sol–gel auto-combustion and then annealed at 700 °C for 4 h. The results of differential thermal analysis indicate that the thermal decomposition temperature is about 210 °C and Ni–Zn ferrite nanoparticles could be synthesized in the self-propagating combustion process. The microstructure and magnetic properties were investigated by means of X-ray diffraction, scanning electron microscope, and Vibrating sample magnetometer. It is observed that all the spherical nanoparticles with an average grain size of about 35 nm are of pure spinel cubic structure. The crystal lattice constant declines gradually with increasing x from 0.8435 nm (x=0.20) to 0.8352 nm (x=1.00). Different from the composition of Zn0.5Ni0.5Fe2O4 for the bulk, the maximum Ms is found in the composition of Zn0.3Ni0.7Fe2O4 for nanoparticles. The Hc of samples is much larger than the bulk ferrites and increases with the enlarging x. The results of Zn0.3Ni0.7Fe2O4 annealed at different temperatures indicate that the maximum Ms (83.2 emu/g) appears in the sample annealed at 900 °C. The Hc of Zn0.3Ni0.7Fe2O4 firstly increases slightly as the grain size increases, and presents a maximum value of 115 Oe when the grains grow up to about 30 nm, and then declines rapidly with the grains further growing. The critical diameter (under the critical diameter, the grain is of single domain) of Zn0.3Ni0.7Fe2O4 nanoparticles is found to be about 30 nm.  相似文献   

4.
Polymer-coated magnetic nanoparticles are hi-tech materials with ample applications in the field of biomedicine for the treatment of cancer and targeted drug delivery. In this study, magnetic nanoparticles were synthesized by chemical reduction of FeCl2 solution with sodium borohydride and coated with amine-terminated polyethylene glycol (aPEG). By varying the concentration of the reactants, the particle size and the crystallinity of the particles were varied. The particle size was found to increase from 6 to 20 nm and the structure becomes amorphous-like with increase in the molar concentration of the reactant. The magnetization at 1 T field (M1T) for all samples is > 45 emu/g while the coercivity is in the range of 100-350 Oe. When the ethanol-suspended particles are subjected to an alternating magnetic field of 4 Oe at 500 kHz, the temperature is increased to a maximum normalized temperature (3.8 °C/mg) with decreasing particle size.  相似文献   

5.
We have measured the temperature dependence of the upper critical field, Hc2(T), of carbon-doped MgB2. Hc2(T) does not follow the well-known Werthamer-Helfand-Hohenberg (WHH) result for a one-gap dirty superconductor but can be described well by the result of a recent theoretical calculation for a two-gap dirty superconductor. Hc2(0) of the carbon-doped material is determined to be between 29 and 38 T, substantially higher than that of pure MgB2 (15-23 T).  相似文献   

6.
The vortex matter phase transitions and intrinsic pinning effect were investigated in an MgB2 single crystal using the torque magnetometry. For the field directions apart from the ab plane, we succeed in the observation of the vortex lattice melting transitions, which are transformed from the order-disorder transitions at low temperatures. Both transition fields with field directions can be describe by the GL effective mass model. For the field direction along the ab plane, these transitions become unobservable. Instead, the sudden increase in the hysteresis of magnetization curve occurs, indicating the existence of the intrinsic pinning coming from the layer structure.  相似文献   

7.
Barium ferrite (BaFe12O19—BaM) thick films have been synthesized using a spinning coating sol-gel process. The coating sol was formed from BaM powders dispersed in the BaM raw sol. XRD, SEM, EDX, vibrating sample magnetometer (VSM), and ac susceptometer, were employed to evaluate the structure, composition and magnetic properties of BaM thick films. The results indicated that a uniform and crack-free coating of BaM with ∼15 μm thickness can be produced with good deal of consistency. The perpendicular and in-plane coercivity had the same value of 5 kOe. The high coercivity is attributed to the magnetocrystalline anisotropy and grain size of the sintered BaM layer. Effective magnetic susceptibility in all measurements have linear variation with increasing dc field.  相似文献   

8.
Three series of SmCo5.6Ti0.4 samples were prepared by quenching, melt spinning, and ball milling, respectively. Annealing at different temperatures was carried out for the three series. The influence of the processing routes on the structural and magnetic properties was systematically investigated for this alloy. The as-quenched bulk sample consisted of three phases with a rather coarse grain microstructure. Low intrinsic coercivity (iHc) of 0.12 T was obtained in this sample. While the as-spun ribbons and as-milled/annealed powders showed the CaCu5-type phase (1:5) plus Th2Zn17-type phase (2:17), and the 1:5 phase plus TbCu7-type phase (1:7), respectively, with nanograin microstructure. The iHc of as-spun ribbons and as-milled/annealed (700 °C for 2 h) powders was found to be 0.59 and 2.23 T, respectively. Coercivity mechanism of these as-spun ribbons is mainly of nucleation type. In the as-milled/annealed powders, the network of the nanograin boundaries is believed to provide strong pinning sites for the domain wall movement.  相似文献   

9.
Composites of α-Fe/Fe3O4 having dimensions in the range of 100–150 nm have been prepared by disproportion method. The structure and morphology are investigated by XRD and TEM. XRD shows that the metal has got the BCC structure. TEM shows balls of metallic iron about 100-nm-wide stuck to magnetite grains. Magnetic measurement shows that the sample aged for 3 h and calcined at 200 °C has the maximal saturation magnetization corresponding to the highest concentration of α-Fe in the final sample.  相似文献   

10.
The influence of different heating rates, ranging from 5 to 30 K min−1, on the microstructure and superconducting of the MgB2 bulk was investigated. No obvious variation in the grain size was found for the samples heated from 5 K min−1 to 20 K min−1 except for the changes in morphologies. Moreover, the grain refinement was obtained under the heating rate of 30 K min−1. The critical current density (Jc) suggested that the 5 K min−1 sample had the best performance in high field. Here, the differential thermal analysis (DTA) was employed to analyze the kinetics of MgB2 phase formation with the different heating rates. The results showed that the large amount of MgB2 formed at low temperature, which lead to compact structures under the slow heating rate. The fast heating rate would promote the evaporation of Mg at high temperature, which was considered to generate the vacancy and impurities in the sample.  相似文献   

11.
A novel application of Alnico powder as a thinner microwave absorbing material was investigated. The flake-like Alnico fine powder was found to have excellent complex permeability μ=μ-jμμ=μ-jμ and permittivity ε=ε-jεε=ε-jε in the frequency range of 2–18 GHz. The powder was made from extremely brittle ribbons which were produced using a single roller melt spinning technique. The dependences of the absorption characteristics on the frequency, thickness, and both the dielectric permittivity and magnetic permeability were obtained based on a model in which an electromagnetic wave is incident normal to the surface of the absorbing material backed by a perfect conductor. The samples have the largest values of μμ and μμ at 2 GHz. A minimum reflection loss of −11.4 dB is obtained at 2 GHz for composite with volume fraction 60% of Alnico powder and absorber thickness of 1.8 mm. The results show that flake-like Alnico powder composites can be applied as thinner microwave absorbers in S-band (2–4 GHz).  相似文献   

12.
M-type strontium hexaferrite (SrFe12O19) particles had been prepared by a modified chemical co-precipitation route. Structural and magnetic properties were systematically investigated. Rietveld refinement of X-ray powder diffraction results showed that the sample was single-phase with the space group of P63/mmc and cell parameter values of a=5.8751 Å and c=23.0395 Å. The results of field-emission scanning electronic microscopy showed that the grains were regular hexagonal platelets with sizes from 2 to 4 μm. The composition determined by energy dispersive spectroscopy is the stoichiometry of SrFe12O19. The ferrimagnetic to paramagnetic transition was sharp with Curie temperature TC=737 K, which further confirmed that the samples were single phase. However, it was found that the coercivity, saturation magnetization and the squareness ratio of the synthesized SrFe12O19 samples were lower than the theoretical values, which could be explained by the multi-domain structure and the increase of the demagnetizing factor.  相似文献   

13.
Samples with nominal composition MoSr2HoCu2O8−δ were synthesized and their magnetic and superconducting (SC) properties were investigated. The obtained samples are Mo-deficient. It was established that the magnetic order is of a long-range type. The coincidence of the experimental value of the Curie constant and the theoretical one of MoSr2HoCu2O8−δ shows that the observed magnetic properties of the samples are determined by the highly dominating phase Mo-1212. The two-step resistive SC transition, together with the absence of both diamagnetism and a peak in the specific heat between the two critical temperatures may be associated with the presence of a granular superconductivity. The effect of the Mo-deficiency on the magnetic and SC properties of MoSr2HoCu2O8−δ was discussed.  相似文献   

14.
Magnetosensitive microwave absorption measurements of polycrystalline ferrite Ni0.35Zn0.65Fe2O4 was carried out at 9.4 GHz (X-band) as a function of temperature. Temperature dependence of the total linewidth (ΔHpp) deduced from the resonance spectra showed the passage through the Curie point (Tc~430 K). Additionally, the plot ΔHpp vs. T also indicated the existence of another magnetic phase transition at ~240 K, which can be associated with a Yafet-Kittel-type canting of the magnetic moments. Low-field microwave absorption (LFMA) and the magnetically modulated microwave absorption spectroscopy (MAMMAS) were used to give a further knowledge on this material. For low temperature, these techniques give evidence of a Yafet-Kittel-type canting of the magnetic moments.  相似文献   

15.
Highly ordered Co0.71Pt0.29 alloy nanowire arrays have been fabricated successfully by direct current electro-deposition into the pores of a porous anodic aluminum oxide (AAO) template. SEM and TEM images reveal that the nanowires of array are uniform, well isolated, and parallel to one another. The aspect ratio of nanowires is over 200. XRD and EDS pattern indicates that amorphous Co0.71Pt0.29 structure was formed during electro-deposition. In amorphous sample, magnetocrystal anisotropy is very small, therefore, shape anisotropy plays a dominant role which leads to strong perpendicular anisotropy. High coercivity (Hc=1.7 kOe) and squareness (Mr/Ms) around 0.7 were obtained in the samples when the field was applied parallel to the axis of the nanowires. However, when it changed to polycrystalline structure after annealing, due to the competition of magnetocrystal anisotropy and shape anisotropy, the sample did not display perpendicular anisotropy.  相似文献   

16.
Nanocrystalline Fe50Ni50 alloy samples were prepared by the mechanical alloying process using planetary high-energy ball mill. The alloy formation and different physical properties were investigated as a function of milling time, t, (in the 0–50 h range) by means of the X-ray diffraction (XRD) technique, scanning electron microscopy (SEM), energy dispersive X-ray (EDAX), Mössbauer spectroscopy and the vibrating sample magnetometer (VSM). The complete formation of γ-FeNi is observed after 24 h milling. When milling time increases from 0 to 50 h, the lattice parameter increases towards the Fe50Ni50 bulk value, the grain size decreases from 67 to 13 nm, while the strain increases from 0.09% to 0.41%. Grain morphologies at different formation stages were observed by SEM. Saturation magnetization and coercive fields derived from the hysteresis curves are discussed as a function of milling time.  相似文献   

17.
18.
The structural, magnetic and magnetostrictive properties of Sm1−xCexFe2 (0≤x≤1) Laves compounds have been investigated. The magnetostriction coefficient λ111 and the anisotropy of the Sm1−xCexFe2 compounds decrease with increasing Ce content. The decreasing of anisotropy results in an enhancement of the anisotropic magnetostriction at low magnetic fields for the compounds with a small amount of Ce substituted for Sm.  相似文献   

19.
The magnetic properties of Mg0.95Mn0.05Fe2O4 ferrite samples with an average particle size of ∼6.0±0.6 nm have been studied using X-ray diffraction, Mössbauer spectroscopy, dc magnetization and frequency dependent real χ(T) and imaginary χ(T) parts of ac susceptibility measurements. A magnetic transition to an ordered state is observed at about 195 K from Mössbauer measurements. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization have been recorded at low field and show the typical behavior of a small particle system. The ZFC curve displays a broad maximum at , a temperature which depends upon the distribution of particle volumes in the sample. The FC curve was nearly flat below , as compared with monotonically increasing characteristics of non-interacting superparamagnetic systems indicating the existence of strong interactions among the nanoparticles. A frequency-dependent peak observed in χ(T) is well described by Vogel-Fulcher law, yielding a relaxation time and an interaction parameter . Such values show the strong interactions and rule out the possibility of spin-glass (SG) features among the nanoparticle system. On the other hand fitting with the Néel-Brown model and the power law yields an unphysical large value of τ0 (∼6×10−69 and 1.2×10−22 s respectively).  相似文献   

20.
Nanocrystalline (Nd,Dy)16(Fe,Co)76−xTixB8 magnets were prepared by mechanical alloying and respective heat treatment at 973–1073 K/30–60 min. An addition of 0.5 at % of Ti results in an increase of coercivity from 796 to 1115 kA m−1. Partial substitution of Nd by Dy results in an additional increase of coercivity up to 1234 kA m−1. Mössbauer investigations shows that for x?1 the (Nd,Dy)16(Fe,Co)76−xTixB8 powders are single phase. For higher Ti contents (x>1) the mechanically alloyed powders heat treated at 973 K are no more single phase, and the coercivity decreases due to the presence of an amorphous phase. A heat treatment at a higher temperature (1073 K) for longer time (1 h) results in the full recrystallisation of powders. The mean hyperfine field of the Nd2Fe14B phase decreases for titanium contents of 0?x?1, and remains constant for x>1. This indicates that the Ti content in the Nd2Fe14B phase reaches its maximum value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号