首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A combined fluorescence and electrochemical method is described that is used to simultaneously monitor the type-1 copper oxidation state and the nitrite turnover rate of a nitrite reductase (NiR) from Alcaligenes faecalis S-6. The catalytic activity of NiR is measured electrochemically by exploiting a direct electron transfer to fluorescently labeled enzyme molecules immobilized on modified gold electrodes, whereas the redox state of the type-1 copper site is determined from fluorescence intensity changes caused by Fo?rster resonance energy transfer (FRET) between a fluorophore attached to NiR and its type-1 copper site. The homotrimeric structure of the enzyme is reflected in heterogeneous interfacial electron-transfer kinetics with two monomers having a 25-fold slower kinetics than the third monomer. The intramolecular electron-transfer rate between the type-1 and type-2 copper site changes at high nitrite concentration (≥520 μM), resulting in an inhibition effect at low pH and a catalytic gain in enzyme activity at high pH. We propose that the intramolecular rate is significantly reduced in turnover conditions compared to the enzyme at rest, with an exception at low pH/nitrite conditions. This effect is attributed to slower reduction rate of type-2 copper center due to a rate-limiting protonation step of residues in the enzyme's active site, gating the intramolecular electron transfer.  相似文献   

2.
甘草次酸的电化学研究   总被引:2,自引:0,他引:2  
用单扫示波极谱法研究了甘草次酸在NaAc-HAc缓冲液中(pH4.0-5.5)的电化学行为和反应机理。甘草次酸于-1.53V(vs.SCE)(P1)左右有一个二阶示波导数峰(pH=4.0-4.9),峰高与甘草次酸浓度在0.4-6.3μg/mL范围内呈正比,检出限为0.2μg/mL;pH在5.00-5.53之间,甘草次酸有两个还原峰,其电位分别为-1.51V(P2)和-1.57V(P3)。实验证明甘草次酸的电极过程为不可逆的逐级电子转移过程,H2O2和羟基自由基可催化甘草次酸的还原峰。  相似文献   

3.
Detailed chemical, spectroelectrochemical and computational studies have been used to investigate the mechanism of hypoxia selectivity of a range of copper radiopharmaceuticals. A revised mechanism involving a delicate balance between cellular uptake, intracellular reduction, reoxidation, protonation and ligand dissociation is proposed. This mechanism accounts for observed differences in the reported cellular uptake and washout of related copper bis(thiosemicarbazonato) complexes. Three copper and zinc complexes have been characterised by X-ray crystallography and the redox chemistry of a series of copper complexes has been investigated by using electronic absorption and EPR spectroelectrochemistry. Time-dependent density functional theory (TD-DFT) calculations have also been used to probe the electronic structures of intermediate species and assign the electronic absorption spectra. DFT calculations also show that one-electron oxidation is ligand-based, leading to the formation of cationic triplet species. In the absence of protons, metal-centred one-electron reduction gives the reduced anionic copper(I) species, [CuIATSM](-), and for the first time it is shown that molecular oxygen can reoxidise this anion to give the neutral, lipophilic parent complexes, which can wash out of cells. The electrochemistry is pH dependent and in the presence of stronger acids both chemical and electrochemical reduction leads to quantitative and rapid dissociation of copper(I) ions from the mono- or diprotonated complexes, [CuIATSMH] and [Cu(I)ATSMH2]+. In addition, a range of protonated intermediate species have been identified at lower acid concentrations. The one-electron reduction potential, rate of reoxidation of the copper(I) anionic species and ease of protonation are dependent on the structure of the ligand, which also governs their observed behaviour in vivo.  相似文献   

4.
We report the self-assembly and electrochemical behaviour of the blue copper protein Pseudomonas aeruginosa azurin on Au(111) electrodes in aqueous acetate buffer (pH=4.6). The formation of monolayers of this protein is substantiated by electrochemical measurements. Capacitance results indicate qualitatively that the protein is strongly adsorbed at sub-μM concentrations in a broad potential range (about 700 mV). This is further supported by the attenuation of a characteristic cyclic voltammetric peak of Au(111) in acetate solution with increasing azurin concentration. Reductive desorption is clearly disclosed in NaOH solution (pH=13), strongly suggesting that azurin is adsorbed via its disulphide group. An anodic peak and a cathodic peak associated with the copper centre of azurin are finally observed in the differential pulse voltammograms. These peaks are, interestingly, indicative of long-range electrochemical electron transfer such as paralleled by intramolecular electron transfer between the disulphide anion radical and the copper atom in homogeneous solution, and anticipated by theoretical frames. Together with reported in situ scanning tunnelling microscopy (STM) results they constitute the first case for electrochemistry of self-assembled monolayers of azurin, even redox proteins. This integrated investigation provides a new approach to both structure and function of adsorbed redox metalloproteins at the molecular level.  相似文献   

5.
The reduction of cyclopentadienylmetal halide complexes is generally considered to involve addition of an electron to an orbital that is antibonding with respect to the metal-halide bond. Subsequent metal-halide bond cleavage yields the halide and an organometallic radical. At inert electrodes, this radical is reduced further to an 18-electron anion. This series of reactions constitutes a prototypical ECE mechanism. Chemical reduction can be used to divert the radical into other pathways such as electron transfer chain catalyzed substitution. Attempts to initiate such reductively induced substitution reactions of CpFe(CO)2I and Cp′Mo(CO)3I give very different results, suggesting that these very similar complexes are reduced via substantially different mechanisms. Very likely, the molybdenum complex reacts via a DISP mechanism instead of ECE. The difference in electrochemical reduction mechanism as well as the different reactivity toward reductively induced substitution are explained in terms of a difference in the formation constants of 19-electron intermediates.  相似文献   

6.
Multicopper oxidases are widely studied enzymes catalyzing the oxygen reduction reaction. Among this family, one class belongs to the copper efflux oxidases. They are far less studied in bioelectrochemistry mainly because of the low potential at which they reduce O2. However, the presence of a specific domain rich in methionine residues covering the first copper electron acceptor induces fundamental issues regarding the electron transfer pathway. In addition, as they are involved in copper homeostasis, the understanding of their catalytic mechanism may have important consequences in therapeutic applications. We present here the last findings reported on copper efflux oxidases based on electrochemical tools. We focus on the proposed roles of the methionine-rich domain in the electron transfer process. Especially, copper binding to this domain and consequences on the interfacial electron transfer process appear to be two fundamental aspects to discuss.  相似文献   

7.
The mechanism of the electrochemical reduction of nitric oxide (NO) by hemin adsorbed at pyrolitic graphite was investigated. The selectivity of NO reduction was probed by combining the rotating ring disk electrode (RRDE) technique with a newly developed technique called on-line electrochemical mass spectroscopy (OLEMS). These techniques show that NO reduction by adsorbed heme groups results in production of hydroxylamine (NH(2)OH) with almost 100% selectivity at low potentials. Small amounts of nitrous oxide (N(2)O) were only observed at higher potentials. The rate-determining step in NO reduction most likely consists of an electrochemical equilibrium involving a proton transfer, as can be derived from the Tafel slope value of 62 mV/dec and the pH dependence of -42 mV/pH. The almost 100% selectivity toward NH(2)OH distinguishes this system both from NO reduction on bare metal electrodes, which often yields NH(3), and from biological NO reduction in cytochrome P450nor, which yields N(2)O exclusively.  相似文献   

8.
TMQ is an important precursor in industrial vitamin E synthesis. We report a "green chemistry approach" with respect to the highly selective and environmentally friendly oxidation of 2,3,6-trimethylphenol (TMP) to trimethyl-1,4-benzoquinone (TMQ) with molecular oxygen as oxidant and a copper catalyst immobilized in a molten salt. n-Butanol as co-solvent has a positive effect on the activity and selectivity. The structurally characterized catalyst, a 1-n-butyl-3-methylimidazolium oxotetracuprat, is formed in situ via hydrolysis of CuCl2 in the presence of imidazolium chloride. We propose a mechanism of oxidative phenolate activation at a [Cu4(mu4-O)]6+ core as electronically coupled electron acceptor, formation of a copper-bound phenolate radical anion, spin delocalization into the aromatic ring, and attack by triplet oxygen at the para position. Attack of Cu(I) as reduction equivalent at the peroxy radical, proton-mediated elimination of a copper(II)-hydroxo species, will either substitute a copper(I) site in the reduced oxo cluster or take up an electron from the reduced mixed valent cluster [Cu4(mu4-O)]6+ to regenerate the oxidized cluster as the active electron acceptor.  相似文献   

9.
The use of a reagent containing copper (II), bicinchoninic acid (BCA) and tartrate buffered at pH 11.25 was studied voltammetrically, coulometrically, spectrophotometrically and chemically. The reagent exhibits three cathodic waves at rotating platinum disk and rotating glassy carbon electrodes. The two more-positive cathodic waves correspond to electrochemical reduction to copper (I)-bisbicinchoninate, Cu(BCA)23?. The third cathodic wave is caused by reduction to metallic copper. A reaction mechanism is proposed that shows the major chemical species in the solution and the electrochemical reaction products. Voltammetric and chemical studies indicate that the reagent should be used with care for protein assays because it is subject to multiple chemical interferences.  相似文献   

10.
One-electron reduction of the dioxygen molecule by the reduced form of mitochondrial ubiquinones (Q) of the NADH dehydrogenase (complex I) and mitochondrial cytochrome bc1 (complex III) is believed to be the main source of the superoxide anion radical O2*- and the hydroperoxide radical OOH*. In this work, we modeled the energetics of four possible reactions of the triplet ((3)Sigma(g)) dioxygen-molecule reduction by fully reduced and protonated ubiquinone (QH2; reaction 1), its deprotonated form (QH-; reaction 2), the semiquinone radical (QH*; reaction 3), and the semiquinone anion radical (Q*-; reaction 4), by means of ab initio calculations with the 6-31G(d) and 6-31+G(d) basis set in the restricted open-shell Hartree-Fock (ROHF), unrestricted Hartree-Fock (UHF), and complete active space self-consistent field (CASSCF) with dynamic correlation [at the second-order M?ller-Plesset (MP2) or multiple reference M?ller-Plesset (MRMP), respectively] schemes and the basis set superposition error (BSSE) correction included, as well as semiempirical AM1 and PM3 calculations in the UHF and ROHF schemes. 2-Butene-1,4-dione and p-benzoquinone were selected as model compounds. For the reduced forms of both compounds, reaction 1 turned out to be energetically unfavorable at all levels of theory, this agreeing with the experimentally observed diminished reductive properties of hydroquinone derivatives at low pH. For 2-butene-1,4-dione treated at the most advanced MRMP/CASSCF/6-31+G(d) level, the energies of reactions 1-4 are 4.7, -34.3, -15.0, and -4.1 kcal/mol, respectively. This finding suggests that reactions 2 and 3 are the most likely mechanisms of electron transfer to molecular oxygen in aprotic environments and that proton transfer is involved in this process. Nearly the same energies of reactions 2 and 3 were calculated at the MRMP/CASSCF/6-31+G(d) level for reduced forms of p-benzoquinone. Inclusion of diffuse functions in the basis set and dynamic correlation at the CASSCF level appears essential. Because deprotonated ubiquinol is unlikely to exist in physiological environments, reaction 3 appears to be the most likely mechanism of one-electron reduction of oxygen; however, if oxygen can penetrate cytochrome bc1 as far as the Q(o) center where ubiquinol can be deprotonated, reaction 2 can also come into play. The energies of reactions 2 and 3 calculated at the MRMP/CASSCF/6-31+G(d) level are most closely reproduced in the ab initio and semiempirical UHF PM3 calculations. Additional semiempirical calculations on more realistic models of ubiquinone, 2,3-dimethoxy-6-methyl-p-benzoquinone and 2,3-dimethoxy-5-isoprenyl-6-methyl-p-benzoquinone, gave qualitatively the same relations between the energies of reactions 2 and 3 as those carried out for p-benzoquinone species, thereby suggesting that this method could be used in studying electron-transfer reactions from reduced quinone derivatives to molecular oxygen in more complex systems, such as a model of the Q(o) site of cytochrome bc1, where applying ab initio methods is unfeasible.  相似文献   

11.
The electrochemical reduction of 3,5-di-tert-butyl-1,2-benzoquinone, 1, has been studied in acetonitrile with added 2,2,2-trifluoroethanol, 2. At low concentrations of 2 the reaction proceeds by the following pathway: reduction of the quinone (Q) to its anion radical (Q*-) followed by complexation of the anion radical with 2 (HA) and the further reduction of the hydrogen-bonded complex (Q*- (HA)) to form HQ- and A-. The latter reaction is a concerted proton and electron- transfer reaction (CPET). At higher concentrations of 2, the pathway changes. The first steps remain the same, but now Q*- (HA) is reduced to HQ- via a disproportionation reaction with Q*- along with proton transfer from HA to Q*- to form HQ* which is reduced to HQ-. The only mechanism that could be found which would account for all of the data involves proton transfer to Q*- occurring within a higher complex, Q*-(HA)3.  相似文献   

12.
The electron-transfer (ET) reduction of two diphenyl-substituted bicyclic endoperoxides was studied in N,N-dimethylformamide by heterogeneous electrochemical techniques. The study provides insight into the structural parameters that affect the reduction mechanism of the O-O bond and dictate the reactivity of distonic radical anions, in addition to evaluating previously unknown thermochemical parameters. Notably, the standard reduction potentials and the bond dissociation energies (BDEs) were evaluated to be -0.55+/-0.15 V and 20+/-3 kcal mol(-1), respectively, the last representing some of the lowest BDEs ever reported. The endoperoxides react by concerted dissociative electron transfer (DET) reduction of the O-O bond yielding a distonic radical-anion intermediate. The reduction of 1,4-diphenyl-2,3-dioxabicyclo[2.2.2]oct-5-ene (1) results in the quantitative formation of 1,4-diphenylcyclohex-2-ene-cis-1,4-diol by an overall two-electron mechanism. In contrast, ET to 1,4-diphenyl-2,3-dioxabicyclo[2.2.2]octane (2) yields 1,4-diphenylcyclohexane-cis-1,4-diol as the major product; however, in competition with the second ET from the electrode, the distonic radical anion undergoes a beta-scission fragmentation yielding 1,4-diphenyl-1,4-butanedione radical anion and ethylene in a mechanism involving less than one electron. These observations are rationalized by an unprecedented catalytic radical-anion chain mechanism, the first ever reported for a bicyclic endoperoxide. The product ratios and the efficiency of the catalytic mechanism are dependent on the electrode potential and the concentration of weak non-nucleophilic acid. A thermochemical cycle for calculating the driving force for beta-scission fragmentation is presented, and provides insight into why the fragmentation chemistry of distonic radical anions is different from analogous neutral biradicals.  相似文献   

13.
To continue earlier investigations into the dimerization reaction during the cathodic cleavage of a carbon-halogen bond and, in particular, to find an accessible way for synthesizing 1,4-butanediol, a comparative study of the dimerization of ethylene halohydrins and butyl and allyl halides is performed. On the basis of the data obtained by the laser photoemission (LPE), controlled-potential electrolysis, and voltammetry techniques, a general mechanism of the electrode reactions involving these compounds and their intermediates is proposed and recommendations on the optimization of the 1,4-butanediol synthesis are elaborated. According to LPE data, at pH < 8.1, the Β-hydroxyethyl radical reduction occurs with a preceding formation of a complex with a proton donor, whereas a direct electron transfer is characteristic of the butyl radical. This difference in mechanisms is offered as the main reason for the lesser capability of ethylene halohydrins to electrochemical dimerization as compared with butyl halides, where the octane yield reached up to 80–84%. The earlier assumption about a high electrocatalytic activity of the copper cathode in dimerization of ethylene halohydrins is confirmed, and possibilities of an iron cathode in this process are revealed. The dimer yield is found to increase in alkaline solutions and at lowered temperatures, specifically, at pH 11 and temperatures of 0–5°C., the 1,4-butanediol yield reached ∼17%.  相似文献   

14.
应用循环伏安和紫外光谱法研究杨梅酮氧化还原性质及其稳定性.结果表明:在B-R缓冲溶液中玻碳电极上,杨梅酮的氧化还原表现为两步氧化反应和两步还原反应.氧化反应对应于B环4-′OH和C环3-OH的氧化,还原反应对应于C环4位羰基还原为中间体自由基之后再进一步还原生成羟基.以上各步反应均为单电子单质子电极过程.杨梅酮的氧化还原反应与溶液pH关系密切,但其原因来自于去质子化作用,并导致它的抗氧化能力增强,但其最终氧化产物没有电化学活性,并吸附在电极表面,阻碍了电极过程电子传递.在pH 7.45~12.00范围内,杨梅酮也因去质子化作用导致紫外光谱Ⅰ带和Ⅱ带随pH增加,而发生红移,分解作用加剧.同时分解作用还与放置时间有关.  相似文献   

15.
Proton-coupled electron-transfer reactions are central to enzymatic mechanism in many proteins. In several enzymes, essential electron-transfer reactions involve oxidation and reduction of tyrosine side chains. For these redox-active tyrosines, proton transfer couples with electron transfer, because the phenolic pKA of the tyrosine is altered by changes in the tyrosine redox state. To develop an experimentally tractable peptide system in which the effect of proton and electron coupling can be investigated, we have designed a novel amino acid sequence that contains one tyrosine residue. The tyrosine can be oxidized by ultraviolet photolysis or electrochemical methods and has a potential cross-strand interaction with a histidine residue. NMR spectroscopy shows that the peptide forms a beta-hairpin with several interstrand dipolar contacts between the histidine and tyrosine side chains. The effect of the cross-strand interaction was probed by electron paramagnetic resonance and electrochemistry. The data are consistent with an increase in histidine pKA when the tyrosine is oxidized; the effect of this thermodynamic coupling is to increase tyrosyl radical yield at low pH. The coupling mechanism is attributed to an interstrand pi-cation interaction, which stabilizes the tyrosyl radical. A similar interaction between histidine and tyrosine in enzymes provides a regulatory mechanism for enzymatic electron-transfer reactions.  相似文献   

16.
研究了抗癌药物冬凌草甲素在悬汞电极上的电化学行为。在NaAc NaOH(pH=7.8)的缓冲溶液中,冬凌草甲素有一受吸附控制的还原峰,峰电位为-1.150V,其电极反应过程是单电子转移,传递系数α为0.834,电荷传递表观速率常数KS为2.26s-1,初步探讨了其可能的电极反应机理.  相似文献   

17.
The reductive electrochemistry of substituted benzophenones in the aprotic room-temperature ionic liquid (RTIL) 1-butyl-1-methylpyrrolidinium bistriflimide occurs via two consecutive one-electron processes leading to the radical anion and dianion, respectively. The radical anion exhibited electrochemical reversibility at all time-scales whereas the dianion exhibited reversibility at potential sweep rates of >or=10 V s(-1), collectively indicating the absence of strong ion-paring with the RTIL cation. In contrast, reduction in 1-butyl-3-methylimidazolium bistriflimide is complicated by proton-transfer from the [Bmim] cation. At low potential sweep rates, reduction involves a single two-electron process characteristic of either an electrochemical, chemical, electrochemical (ECE) or disproportion-type (DISP1) mechanism. The rate of radical anion protonation in [Bmim] is governed by basicity and conforms to the Hammett free-energy relation. At higher potential sweep rates in [Bmim][NTf2], reduction occurs via two consecutive one-electron processes, giving rise to the partially reversible generation of the radical anion and the irreversible generation of the dianion, respectively. Also, the redox potentials for the reversible parent/radical anion couples were found to be a linear function of Hammett substituent constants in both RTIL media and exhibited effectively equivalent solvent-dependent reaction constants, which are similar to those for reduction in polar molecular solvents such as acetonitrile or alcohols.  相似文献   

18.
A series of bridging ligands, dipyrido[2,3-a:3',2'-c]phenazine (ppb), dipyrido[2,3-a:3',2'-c]-6,7-dichlorophenazine (ppbCl2), and dipyrido[2,3-a:3',2'-c]-6,7-dimethylphenazine (ppbMe2), and their binuclear copper(I) complexes have been synthesized, and their spectral properties were measured. The single-crystal structure of the complex, [(PPh3)2Cu(mu-ppbCl2)Cu(PPh3)2](BF4)2 in the monoclinic space group P21/c, 18.2590(1), 21.1833(3), 23.2960(3) A with Z = 4 is reported. The copper(I) complexes are deeply colored through MLCT transitions in the visible region. The vibrational spectra of the ligands have been modeled using ab initio hybrid density functional theory (DFT) methods (B3LYP/6-31G(d)) and compared to experimental FT-Raman and IR data. The DFT calculations are used to interpret the resonance Raman spectra, and thus the electronic spectra, of the complexes. The preferential enhancement of modes associated with the phenanthroline section of the ligands with blue excitation (lambda(exc) = 457.9 nm) over phenazine-based modes with redder excitation (lambda(exc) = 514.5 and 632.8 nm) suggests the 2 MLCT transitions terminated on different unoccupied MOs are present under the visible absorption envelope. The radical anion species of the ligands are prepared by the electrochemical reduction of the binuclear copper(I) complexes; no evidence of dechelation prevalent in other copper(I) complexes is observed. The resonance Raman spectra of the reduced complexes are dramatically different from those of the parent species. Across the series common bands are observed at about 1590 and 1570 cm(-1) which do not shift with reduction but are altered in intensity. The normal-mode analysis of the radical anion species suggests that these normal modes primarily involve bond length distortions that are unaffected by reduction.  相似文献   

19.
Metal–organic framework cathodes usually exhibit low capacity and poor electrochemical performance for Li‐ion storage owing to intrinsic low conductivity and inferior redox activity. Now a redox‐active 2D copper–benzoquinoid (Cu‐THQ) MOF has been synthesized by a simple solvothermal method. The abundant porosity and intrinsic redox character endow the 2D Cu‐THQ MOF with promising electrochemical activity. Superior performance is achieved as a Li‐ion battery cathode with a high reversible capacity (387 mA h g?1), large specific energy density (775 Wh kg?1), and good cycling stability. The reaction mechanism is unveiled by comprehensive spectroscopic techniques: a three‐electron redox reaction per coordination unit and one‐electron redox reaction per copper ion mechanism is demonstrated. This elucidatory understanding sheds new light on future rational design of high‐performance MOF‐based cathode materials for efficient energy storage and conversion.  相似文献   

20.
The factors that control the successive reductive expulsion of chloride ions from aliphatic gem-polychlorides are investigated, taking as examples the electrochemical reduction of polychloromethanes and polychloroacetonitriles in N,N-dimethylformamide. At each elimination stage, the reaction involves, as a rate-determining step, the transfer of one electron concerted with the cleavage of the carbon-chloride bond. The second step is an immediate electron transfer to the ensuing radical, taking place at a potential more positive than the potential at which the first electron transfer occurs. The carbanion thus formed is sufficiently basic to be protonated by any trace weak acid present in the reaction medium. The three successive elimination steps require increasingly negative potentials. Application of the "sticky" dissociative electron transfer model allows one to quantitatively unravel the factors that control the energetics of the successive reductive expulsion of chloride ions. The large potential gaps between each stage stem primarily from large differences in the dissociative standard potentials. They are also strongly affected by two cumulative intrinsic activation barrier factors, namely, the bond dissociation energy of the substrate that decreases with the number of chlorine atoms and the interaction between chloride ion and the radical that increases in the same direction. In the case of alpha,beta-polychloroethanes (Cl(3)C-CCl(3), Cl(2)HC-CCl(3), Cl(2)HC-CHCl(2), ClH(2)C-CHCl(2)) too, the first step is a dissociative electron transfer with sizable ion-radical interactions in the product cluster. Likewise, a second electron transfer immediately leads to the carbanion, which however prefers to expel a second chloride ion, leading to the corresponding olefin, than to be protonated to the hydrogenolysis product. The ion-radical interaction in the product cluster plays a major role in the control of the reduction potential. The reduction of the alpha,beta-polychloroethenes (Cl(2)C=CCl(2), ClHC=CCl(2), ClHC=CHCl) follows a similar 2e(-)-2Cl(-) reaction sequence, leading then to the corresponding alkynes. However, unlike the polychloroethane case, the expulsion of the first chloride ion follows a stepwise electron transfer/bond cleavage mechanism. The reduction potential is thus essentially governed by the thermodynamics of the anion radical formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号