首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the degenerate scale problem for plane elasticity in a multiply connected region with an outer elliptic boundary. Inside the elliptic boundary, there are many voids with arbitrary configurations. The problem is studied on the relevant homogenous boundary integral equation. The suggested solution is derived from a solution of a relevant problem. It is found that the degenerate scale and the non-trivial solution along the elliptic boundary in the problem are same as in the case of a single elliptic contour without voids. The present study mainly depends on integrations of several integrals, which can be integrated in a closed form.  相似文献   

2.
This paper investigates the degenerate scale problem for the Laplace equation and plane elasticity in a multiply connected region with an outer circular boundary. Inside the boundary, there are many voids with arbitrary configurations. The problem is analyzed with a relevant homogenous BIE (boundary integral equation). It is assumed that all the inner void boundary tractions are equal to zero, and tractions on the outer circular boundary are constant. Therefore, all the integrations in BIE are performed on the outer circular boundary only. By using the relation z * conjg(z) = a * a, or conjg(z) = a * a/z on the circular boundary with radius a, all integrals can be reduced to an integral for complex variable and they can be integrated in closed form. The degenerate scale a = 1 is found in the Laplace equation and in plane elasticity regardless of the void configuration.  相似文献   

3.
A conventional complex variable boundary integral equation(CVBIE) in plane elasticity is provided. After using the Somigliana identity between a particular fundamental stress field and a physical stress field, an additional integral equality is obtained. By adding both sides of this integral equality to both sides of the conventional CVBIE, the amended boundary integral equation(BIE) is obtained. The method based on the discretization of the amended BIE is called the amended influence matrix method.With this method, for the Neumann boundary value problem(BVP) of an interior region,a unique solution for the displacement can be obtained. Several numerical examples are provided to prove the efficiency of the suggested method.  相似文献   

4.
Summary A boundary integral equation method is proposed for approximate numerical and exact analytical solutions to fully developed incompressible laminar flow in straight ducts of multiply or simply connected cross-section. It is based on a direct reduction of the problem to the solution of a singular integral equation for the vorticity field in the cross section of the duct. For the numerical solution of the singular integral equation, a simple discretization of it along the cross-section boundary is used. It leads to satisfactory rapid convergency and to accurate results. The concept of hydrodynamic moment of inertia is introduced in order to easily calculate the flow rate, the main velocity, and the fRe-factor. As an example, the exact analytical and, comparatively, the approximate numerical solution of the problem of a circular pipe with two circular rods are presented. In the literature, this is the first non-trivial exact analytical solution of the problem for triply connected cross section domains. The solution to the Saint-Venant torsion problem, as a special case of the laminar duct-flow problem, is herein entirely incorporated.  相似文献   

5.
This paper studies a numerical solution of multiple crack problem in a finite plate using coupled integral equations. After using the principle of superposition, the multiple crack problem in a finite plate can be converted into two problems: (a) the multiple crack problem in an infinite plate and (b) a usual boundary value problem for the finite plate. For the former problem, the Fredholm integral equation is used. For the latter problem, a BIE based on complex variable is suggested in which a Cauchy singular kernel exists. For the proposed BIE, after using the inverse matrix technique, the dependence of the traction at a domain point from the boundary tractions is formulated indirectly. This is a particular advantage of the present study. Several numerical examples are provided and the computed results for stress intensity factor and T-stress at crack tips are given.  相似文献   

6.
7.
An integral equation method is presented for the solution of axially symmetrical elasticity problems. The obtained integral equations are of second kind with regular (Fredholm) and singular kernel. The method is suited to the treament of both simply and multiply connected regions with irregular boundary shapes and any boundary load distribution which satisfies the equilibrium conditions. Numerical results are included.  相似文献   

8.
In the direct boundary element method (BEM) formulation of anisotropic thermoelasticity, thermal loads manifest themselves as additional volume integral terms in the boundary integral equation (BIE). Conventionally, this requires internal cell discretisation throughout the whole domain. In this paper, the multiple reciprocity method in BEM analysis is employed to treat the general 2D thermoelasticity problem when the thermal loading is due to an internal non-uniform volume heat source. By successively performing the “volume-to-surface” integral transformation, the general formulation of the associated BIE for the problem is derived. The successful implementation of such a scheme is illustrated by three numerical examples.  相似文献   

9.
The scattering problem of elastic wave by arbitrarily shaped cavities in an infinite anisotropic medium is investigated by the boundary integral equation (BIE) method. The formulations of BIE are derived with the help of generalized Green's formula. The discretization of BIE is based upon constant elements. After confirmation of the accuracy of the present method, some numerical examples are given for various cavities in a full space, in which an isotropic body with a circular cylinder hole is used for comparison and good agreement is observed. It has been proved that the method developed in this paper is effective.  相似文献   

10.
Anti-plane cracks in finite functionally graded piezoelectric solids under time-harmonic loading are studied via a non-hypersingular traction based boundary integral equation method (BIEM). The formulation allows for a quadratic variation of the material properties in two directions. The boundary integral equation (BIE) system is treated by using the frequency dependent fundamental solution based on Radon transforms. Its numerical solution provides the displacements and tractions on the external boundary as well as the crack opening displacements from which the mechanical stress intensity factor (SIF) and the electrical displacement intensity factor (EDIF) are determined. Several examples for single and multiple straight and curved cracks demonstrate the applicability of the method and show the influence of the different system parameters.  相似文献   

11.
The boundary integral equation (BIE) of displacement derivatives is put at a disadvantage for the difficulty involved in the evaluation of the hypersingular integrals. In this paper, the operators δij and εij are used to act on the derivative BIE. The boundary displacements, tractions and displacement derivatives are transformed into a set of new boundary tensors as boundary variables. A new BIE formulation termed natural boundary integral equation (NBIE) is obtained. The NBIE is applied to solving two-dimensional elasticity problems. In the NBIE only the strongly singular integrals are contained. The Cauchy principal value integrals occurring in the NBIE are evaluated. A combination of the NBIE and displacement BIE can be used to directly calculate the boundary stresses. The numerical results of several examples demonstrate the accuracy of the NBIE.  相似文献   

12.
本文针对各向异性势问题提出了一类充分必要的随机边界积分方程。数值计算结果表明在退化尺度附近,充要的随机边界积分方程较习用的随机边界积分方程有较大的优越性。  相似文献   

13.
In this paper, the enriched boundary element-free method for two-dimensional fracture problems is presented. An improved moving least-squares (IMLS) approximation, in which the orthogonal function system with a weight function is used as the basis function, is used to obtain the shape functions. The IMLS approximation has greater computational efficiency and precision than the existing moving least-squares (MLS) approximation, and does not lead to an ill-conditioned system of equations. Combining the boundary integral equation (BIE) method and the IMLS approximation, a boundary element-free method (BEFM), for two-dimensional fracture problems is obtained. For two-dimensional fracture problems, the enriched basis function is used at the tip of the crack, and then the enriched BEFM is presented. In comparison with other existing meshless boundary integral equation methods, the BEFM is a direct numerical method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be implemented easily, which leads to a greater computational precision. When the enriched BEFM is used, the singularity of the stresses at the tip of the crack can be shown better than that in the BEFM. For the purposes of demonstration, some selected numerical examples are solved using the enriched BEFM.  相似文献   

14.
研究了线性温变作用下椭圆夹杂的热弹性问题。通过构造辅助函数,将复变函数的分区全纯函数理论,Riemann边值问题和Cauchy型积分相结合,求得各分区之间的解析关系,从而获得了无穷远均匀加载和线性温变共同作用下椭圆夹杂平面热弹性场的封闭形式解。从本文解答的特殊情况可直接得到已有的若干结果,并可得到一些具有实际意义的新结果。本文发展的分析方法,为求解复杂多连通域的平面热弹性问题提供了一条有效途径。  相似文献   

15.
A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations(BIE)and solved with the newly developed boundary point method(BPM).The model is closely derived from the concept of the equivalent inclusion of Eshelby tensors.Eigenstrains are iteratively determined for each short.fiber embedded in the matrix with various properties via the Eshelby tensors,which can be readily obtained beforehand either through analytical or numerical means.As unknown variables appear only on the boundary of the solution domain,the solution scale of the inhomogeneity problem with the model is greatly reduced.This feature is considered significant because such a traditionally time-consuming problem with inhomogeneity can be solved most cost-effectively compared with existing numerical models of the FEM or the BEM.The numerical examples are presented to compute the overall elastic properties for various short-fiber reinforced composites over a representative volume element(RVE),showing the validity and the effectiveness of the proposed computational modal and the solution procedure.  相似文献   

16.
A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations (BIE) and solved with the newly developed boundary point method (BPM). The model is closely derived from the concept of the equivalent inclusion Of Eshelby tensors. Eigenstrains are iteratively determined for each short-fiber embedded in the matrix with various properties via the Eshelby tensors, which can be readily obtained beforehand either through analytical or numerical means. As unknown variables appear only on the boundary of the solution domain, the solution scale of the inhomogeneity problem with the model is greatly reduced. This feature is considered significant because such a traditionally time-consuming problem with inhomogeneity can be solved most cost-effectively compared with existing numerical models of the FEM or the BEM. The numerical examples are presented to compute the overall elastic properties for various short-fiber reinforced composites over a representative volume element (RVE), showing the validity and the effectiveness of the proposed computational modal and the solution procedure.  相似文献   

17.
将弹性力学平面问题归化成无奇异边界积分方程,避免了传统的边界元法中的柯西主值(CPV)积分和Hadamard-Finite-Parts(HFP)积分的计算,建立完整的数值求解体系。  相似文献   

18.
提出了间接求解传统Helmholtz边界积分方程CBIE的强奇异积分和自由项系数,以及Burton-Miller边界积分方程BMBIE中的超强奇异积分的特解法。对于声场的内域问题,给出了满足Helmholtz控制方程的特解,间接求出了CBIE中的强奇异积分和自由项系数。对于声场外域对应的BMBIE中的超强奇异积分,按Guiggiani方法计算其柯西主值积分需要进行泰勒级数展开的高阶近似,公式繁复,实施困难。本文给出了满足Helmholtz控制方程和Sommerfeld散射条件的特解,提出了间接求出超强奇异积分的方法。推导了轴对称结构外场问题的强奇异积分中的柯西主值积分表达式,并通过轴对称问题算例证明了本文方法的高效性。数值结果表明,对于内域问题,采用本文特解法的计算结果优于直接求解强奇异积分和自由项系数的结果,且本文的特解法可避免针对具体几何信息计算自由项系数,因而具有更好的适用性。对于外域问题,两者精度相当,但本文的特解法可避免对核函数进行高阶泰勒级数展开,更易于数值实施。  相似文献   

19.
研究了复合材料含界面层圆形夹杂内部的一个螺旋位错在夹杂,界面层与基体材料中产生的弹性干涉,将复变函数的分区亚纯函数理论与柯西型积分,罗朗级数相结合,求出了各分区复势的解析关系,化为一个关于界面层复势的函数方程,用显示式表达了问题的结果,揭示了界面层参数对位错干涉能与位错力的影响规律。该解析方法较经典级数方法未知量大量减少,表达式更加简洁,结果的特殊情形包含了若干已有成果。  相似文献   

20.
导数场边界积分方程通常难以应用,因为存在着超奇异主值积分的计算障碍。弹性理论中有几类不同的位移导数边界积分方程,本文采用算子δij和∈ij(排列张量)作用于这些导数边界积分方程,做一系列变换,原有的超奇异积分被正则化为强奇异积分获解。从而建立了这些位移导数边界积分方程之间的转换关系,它们均可以归结为自然边界积分方程。自然边界积分方程仅存在容易计算的Cauchy主值积分。自然边界积分方程分析可直接获得边界应力和位移导数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号