首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proton magnetic resonance imaging was performed on rats before induction of diabetes with streptozotocin (STZ) and at 2 and 12 days postinduction. Images revealed an increase in maximal longitudinal and axial dimensions of the kidneys at 2 days and a further increase at 12 days. Similarly, an increase in the size of the remaining kidney was seen in a rat which underwent uninephrectomy as a positive control. Two major differences were observed between the kidney undergoing compensatory hypertrophy and those developing diabetic nephropathy: (i) Expansion of the renal vasculature was seen only in images of the diabetic rat; (ii) A loss in conspicuity of the normal corticomedullary junction was seen in the T2-weighted images of the diabetic rat but not in the uninephrectomized rat. Histologic examination revealed that the medulla increased to a size greater than the cortex during diabetic nephropathy whereas the medullary volume was less than that of the cortex during compensatory hypertrophy. In vitro T1 relaxation times in cortex, outer medulla and inner medulla of kidneys from control rats were measured and compared with the same respective regions in diabetic rats. When these values were correlated with tissue water content, a linear increase in relaxation rate versus percent water content from cortex to inner medulla was found in the control kidneys, but this correlation was absent in diabetic nephropathy. These studies demonstrate that MRI is an effective noninvasive tool for studying the course of renal hypertrophy and hydration changes in the development of renal disease in STZ-induced diabetes in the rat.  相似文献   

2.
Magnetic resonance imaging (MRI) has been applied to assess kidney function in normal rats by monitoring the passage of the extracellular contrast agent GdDOTA. High-resolution images have been obtained using either the rapid acquisition with relaxation enhancement (RARE) or the snapshot pulse sequence. The latter was superior in anatomic definition due to the shorter echo delays used. The GdDOTA induced signal enhancements in the various renal structures were theoretically modeled and the results of the regression analysis then used to estimate local tissue concentrations in renal cortex, inner medulla and outer medulla/pelvis. The concentration-time curves in vena cava and renal cortex were similar and distinctly different from the ones in medulla and pelvis. This is reflected in the time-to-peak (TTP) values, which were TTP (blood) = 0.18 +/- 0.03 < TTP (cortex) = 0.26 +/- 0.05 < TTP (outer medulla) = 0.62 +/- 0.03 < TTP (inner medulla/pelvis) = 0.92 +/- 0.16 min. The initial tracer uptake rates depended linearly on the dose of GdDOTA administered, the value of the uptake rate in the cortex being significantly higher than those in the outer and inner medulla, which were identical within error limits. The initial medullar tracer uptake followed a first-order kinetics. The rate constant k(cl) = (dc[medulla]/dt)/c[cortex] = 3.4 +/- 0.5 min(-1) for the transition from cortex (predominantly blood signal) to medulla (predominantly urine) was considered a measure for the renal clearance. Intravenous administration of furosemide at doses 2.5, 5, and 10 mg/kg led to a dose-dependent decrease of k(cl). This reflects the inhibitory effect of the diuretic furosemide on medullary water resorption and thus the dilution of the GdDOTA in urine.  相似文献   

3.
To investigate the ability of MRI to detect alterations due to renal ischemia, a rabbit renal artery stenosis (RAS) model was developed. Seven rabbits had RAS induced by surgically encircling the artery with a polyethylene band which had a lumen of 1 mm, 1 to 2 weeks prior to imaging. The stenosis was confirmed by angiography, and the rabbits were then imaged in a 1.4 T research MRI unit. T1 was calculated using four inversion recovery sequences with different inversion times. Renal blood flow, using 113Sn-microspheres, and regional water content by drying were then measured. The average T1 of the inner medulla was shorter for the ischemia (1574 msec) than for the contralateral kidney (1849 msec), while no change ws noted in the cortex. Ischemic kidneys had less distinct outer medullary zones on IR images with TI = 600 msec than did contralateral or control kidneys. Blood flow to both the cortex and medulla were markedly reduced in ischemic kidneys compared with contralateral kidneys (119.5 vs. 391 ml/min/100 gm for cortex and 19.8 vs. 50.8 ml/min/100 gm for medulla). Renal water and blood content were less affected. Our rabbit model of renal artery stenosis with MRI, radionuclide, and angiographic correlation has the potential to increase our understanding of MR imaging of the rabbit kidney.  相似文献   

4.
Kidney cortical and medullary spin-lattice (T1) and spin-spin (T2) relaxation times were measured in several types of experimental acute renal failure in rats with a Bruker PC "Multispec." Gentamicin ARF was obtained after one i.p. injection of 100mg Gentamicin/kg BW/day for 8 days. Glycerol ARF: 24 hours after one i.m. injection of 10 ml 50% Glycerol/kg BW. Obstruction ARF: 3 days after complete ureteral ligation. Renal tissue total water content, hydration fraction, fraction bound, blood urea and creatinine were measured at the end of the experiments. Shortened T1 and prolonged T2 were found in both cortex and medulla in the Glycerol ARF group. Gentamicin renal toxicity and the non-functioning kidney with ureteral obstruction are characterized by significant prolongation of T1 and T2 in cortex, while the medullary T1 and T2 were prolonged only in obstruction ARF. The highest T1 and T2 were found in the obstructed non-functioning kidney. The total water content decreased in the Glycerol ARF, increased in the obstruction and remain unchanged in Gentamicin ARF. The hydration fraction and the fraction bound changed significantly in the opposite direction with the total water content. Different profiles of renal cortical and medullary magnetic resonance properties found in several models of experimental ARF in rats indicate that MR properties may provide etiopathogenetic diagnostic possibilities.  相似文献   

5.
In order to assess the sensitivity of nuclear magnetic resonance (NMR) in detecting acute renal vascular insufficiency, in vitro NMR spectroscopy (at 0.25 T) was performed on rabbit renal cortices following 45 min of unilateral renal artery (RAO) or renal vein occlusion (RVO). Data were obtained both with and without paramagnetic enhancement with gadolinium-DTPA (Gd-DTPA). In the absence of contrast material, RVO was distinguished by markedly elevated spin-lattice (T1) and spin-spin (T2) relaxation times when compared to the contralateral control kidney [mean increase of 29% in T1 (p less than 0.001) and 19% in T2 (p less than .001)]. RAO produced no change in T1 (p = N.S.) and a small change in T2 (mean increase of 11%, p less than .01). Five min following injection of 0.05 mM/kg of Gd-DTPA, relaxation times of control kidneys were markedly shortened [mean decrease 75% in T1 (p less than .001) and 12% in T2 (p less than 0.01)]. With Gd-DTPA, kidneys with RVO continued to have elevated T1 and T2 relaxation time, and kidneys with RAO maintained their essentially normal pre-contrast relaxation time values. We conclude that non-contrast NMR tissue analysis clearly differentiated normal from congested (RVO) kidneys, but not from acutely ischemic (RAO) kidneys. Paramagnetic enhancement with Gd-DTPA allows the differentiation of normally perfused from acutely ischemic or congested kidneys.  相似文献   

6.
PurposeTo investigate the utility of diffusion kurtosis imaging (DKI) MRI for evaluation of renal fibrosis in rats with unilateral ureteral obstruction (UUO).MethodsTwenty-five rats had UUO, and ten rats were subjected to sham operation as control. DKI was performed on a 3.0 T MRI scanner on days 1, 3, 5, and 7 after ligation. All rats then underwent 18F-FDG dynamic PET to evaluate unilateral renal function, followed by histological analysis to examine α-smooth muscle actin (α-SMA) expression. DKI metrics were assessed among the time points and between two sides, and compared with maximum standardized uptake value (SUVmax), serum levels of creatinine and urea, and fibrosis marker α-SMA.ResultsMean kurtosis (MK) on day 7, axial kurtosis (Ka) on days 3 and 7, mean diffusivity (MD) on days 1, 3, 5, and 7, and fractional anisotropy (FA) on days 3, 5, and 7 of cortex and medulla between the UUO and contralateral sides were significantly different (all p < 0.05). Over the course of UUO progression, there were significant changes in Ka, MD and FA of medulla (all p < 0.05). FA of medulla was positively correlated with SUVmax (r = 0.641, p < 0.001), and MD of cortex was negatively correlated with urea (r = −0.534, p = 0.001). MD of cortex was negatively correlated with α-SMA on UUO sides (r = −0.710, p < 0.001).ConclusionsDKI shows the potential for noninvasive assessment of renal fibrosis and unilateral renal function induced by UUO.  相似文献   

7.
GD HP-DO3A, a neutral (nonionic) IV MR contrast agent presently in clinical trials, was evaluated with respect to imaging characteristics in rats. Following administration of 0.25 mmol/kg I.V., 58 +/- 19%, i.e. (n = 6) enhancement was noted in a brain gliosarcoma model. Meningeal spread of neoplasia could be identified due to its enhancement (69 +/- 26%) in nine animals. The time course of renal enhancement was quantitated at two dosages, 0.05 (n = 4) and 0.25 mmol/kg (n = 8). At the higher dose, enhancement of both cortex and medulla plateaued between 9 and 23 min postinjection. At the lower dose, enhancement of renal medulla was maximum at 2 min postinjection. These enhancement characteristics (both brain and kidney), at equivalent contrast dosages, are comparable to that previously published for Gd-DTPA. However, Gd HP-DO3A has the potential to be utilized clinically at higher doses than Gd-DTPA, with no reported adverse effects in initial trials employing up to 0.3 mmol/kg.  相似文献   

8.
Anabolic androgenic steroids are widely used by athletes for increasing their muscle mass. These drugs are also used by some patients with chronic renal disease. But the effect of these drugs on the renal structure has received less attention. To investigate which parts of the kidney are affected by these drugs, mice kidneys were studied stereologically after injection of nandrolone decanoate (ND), an anabolic androgenic steroid. The treated group received nandrolone decanoate intraperitoneally (solved in olive oil) in doses of 3mg/kg of body weight and administered in one, two and three doses, respectively, in the first, second and third week of treatment. The mice in the control group received an olive oil solution. One week after the last injection, the mice were anaesthetized and their kidney removed. The analysis of data revealed that the weight of kidney was increased approximately 30% (p < or = 0.006) and its volume increased approximately 25% (p < or = 0.02) in ND treated mice in comparison with the control group. The volume of the cortex increased in ND treated animals approximately 44% (p < or = 0.006). Proximal convoluted tubules (PCT) and distal convoluted tubules (DCT) volume increased approximately 25% (p < or = 0.02) and approximately 68% (p < or = 0.02) in ND treated mice. The volume of glomeruli, other ducts, connective tissues, vessels and the length of PCT, DCT, collecting and Henle's ducts and vessels did not show significant differences. CONCLUSION: ND can increase the volume of the renal cortex and its two main parts, i.e. PCT and DCT in mice.  相似文献   

9.
Enhanced-MR imaging in combination with ultrasmall superparamagnetic iron oxide (USPIO) was used in the glycerol-induced model of acute renal failure (ARF) in the rabbit to detect renal perfusion abnormalities. A control group (n = 5) and an ARF group (n = 5) were studied after intramuscular injection of glycerol (10 ml/kg) with T2-weighted spin-echo sequence at 1.5 T and a 27 μmol/kg IV dose of iron. The signal intensity (SI) was quantified in the cortex, the outer medulla (OM), and the inner medulla (IM). In control rabbits, the maximum SI decrease after USPIO injection was in the OM (76% ± 3.6), as this is the region of maximal vascular density, then in the IM (73.4% ± 2.9). In the glycerol group, SI loss in the OM (61% ± 12.6) and the IM (45.2% ± 16.24) was significant less than in the control group (p < .05). Pathology results showed fibrinous thrombus in the efferent arterioles and congestive aspect of the vasa recta in the medulla. We argue that a reduced medullary concentration of USPIO in the renal failure group is indicative of medullary hypoperfusion.  相似文献   

10.
We report the MRI findings of primary small-cell carcinoma of the kidney (PSCCK) in a 59-year-old female. This tumor appeared as a 16-cm mass that arose from the right kidney. This lesion had diminished signal on T1-weighted images and heterogeneous mixed signal on T2-weighted images. The tumor primarily involved the renal medulla with persistent thin renal cortex. Despite the tumors' large size, no substantial central necrosis was present. The predominant medullary location and the lack of central necrosis in this large tumor were features unusual for renal cell carcinoma and should raise the suspicion of another malignancy, the differential diagnosis of which should contain extrapulmonary small-cell carcinoma of the kidney.  相似文献   

11.
The goal of this study was to characterize the expected range of variation in T1 (spin-lattice relaxation time) of brain tissue in vivo, as a function of age, and to use these maturational norms to study children with sickle cell disease (SCD). A well-validated method (TurboPAIR) was used to measure T1 in 10 tissues in a study group of 200 healthy subjects (ages 4.5 to 79.3; 101 male and 99 female), in a transverse slice at the level of the basal ganglia. Brain T1 was significantly related to age in every tissue characterized (p < 0.001), including the splenium (p < 0.01). Quantitative MRI suggests that brain T1 continues to change throughout the lifespan of healthy subjects free of neurologic complaints. Age-related changes follow a different schedule in each tissue, and age is a stronger determinant of T1 in gray matter than in white matter. Analysis of 141 patients with SCD shows that patients have lower T1 than normal, in both the caudate and the cortex (p < 0.001).  相似文献   

12.
The purpose of this study was to investigate the relationship between the magnetic susceptibility of brain tissue and iron concentration. Phase shifts in gradient-echo images (TE = 60 ms) were measured in 21 human subjects, (age 0.7-45 years) and compared with published values of regional brain iron concentration. Phase was correlated with brain iron concentration in putamen (R2 = 0.76), caudate (0.72), motor cortex (0.68), globus pallidus (0.59) (all p < 0.001), and frontal cortex (R2 = 0.19, p = 0.05), but not in white matter (R2 = 0.05,p = 0.34). The slope of the regression (degrees/mg iron/g tissue wet weight) varied over a narrow range from -1.2 in the globus pallidus and frontal cortex to -2.1 in the caudate. These results suggest that magnetic resonance phase reflects iron-induced differences in brain tissue susceptibility in gray matter. The lack of correlation in white matter may reflect important differences between gray and white matter in the cellular distribution and the metabolic functions of iron. Magnetic resonance phase images provide insight into the magnetic state of brain tissue and may prove to be useful in elucidating the relationship between brain iron and tissue relaxation properties.  相似文献   

13.
To evaluate whether combined contrast enhanced MRA and MRI (ce-MRA-MRI) has the potential to replace intra-arterial DSA (i.a.DSA) in patients with impaired graft function or suspected of vascular complications after pancreas and/or kidney transplantation. 7 patients after combined pancreas-kidney and 22 patients after kidney transplantation underwent ce-MRA-MRI and i.a.DSA within a 3 days interval. Qualitative and quantitative comparison of the arterial and venous supply, the parenchyma and urinary collecting system was made. Both ce-MRA and i.a.DSA showed good results in the detection of arterial stenoses. However, ce-MRA falsely suggested stenoses if vascular clips were used; on the other hand, i.a.DSA was less informative if the graft arteries were very tortuous. Ce-MRA was superior in depicting the venous anatomy (p < 0.001) and the parenchymal enhancement of the pancreatic grafts. For the assessment of the contrast excretion, the pyelocalyceal system and the ureter of the renal graft ce-MRA-MRI was superior (p < 0.001), for small caliber arteries in the renal grafts i.a.DSA was of greater value (p < 0.001). The combination of ce-MRA and MRI is reliable for evaluating the vascular anatomy and has several advantages over i.a.DSA after pancreas and/or kidney transplantation. It can replace i.a.DSA in patients with impaired graft function or suspected of vascular complications after pancreas and/or kidney transplantation.  相似文献   

14.
The pharmacodynamics of polylysine-(Gd-DTPA) (Schering, Berlin, Germany), a new blood pooling contrast agent for MRI, were studied in the rabbit and the rat. Polylysine-(Gd-DTPA) is a compound with high LD50. Due to its high molecular weight (50.000) and physico-chemical properties, it remains in the vascular system; during the first hour, the plasma level is three times higher than for Gd-DTPA. MRI was performed at 1.5 T using a SE sequence with TR/TE = 300/15 or 20 msec. Signal intensities of muscle, liver and kidney were measured before and after intravenous injection of the contrast agent (0.1 mmol/kg) during 8 hours in the rat (n = 3) and up to 2 wk in the rabbit (n = 3). A dose response study in three additional rabbits confirmed that the 0.1 mmol/kg dose was optimal. The pharmacodynamics results show that the effects of polylysine-(Gd-DTPA) are similar in both the rabbit and the rat. The liver signal is enhanced by about 60% immediately after injection in both species. This enhanced signal decays to half its maximal value in about one hour, which makes the contrast agent useful for clinical applications at a dose of 0.1 mmol/kg. In the kidney medulla and cortex the signals are enhanced by much larger factors (about 3 to 4); it takes at least one day for the kidney to clear the contrast agent in both species.  相似文献   

15.
Previous echocardiographic and experimental animal studies have shown that cardiac function, structure, and metabolism change with age. The aim of this study was to evaluate the impact of age on left ventricular high-energy phosphate metabolism. Using a 1.5 Tesla whole-body MR scanner 31P 2D CSI (8 x 8 phase encoding steps, 320 mm field of view) was performed in 76 healthy male volunteers (41.7 +/- 13 years) without any history of coronary heart disease. Fourier interpolation, corrections for T1 saturation effects, the nucleus Overhauser effect, and the blood contamination were applied to the spectroscopic data. The volunteers were divided into two groups, younger (n = 37) and older (n = 39) than 41.7 years. In all volunteers, laboratory specimen were sampled, and transthoracal echocardiography was carried out. Significant differences in left ventricular phosphocreatine (PCr) to beta-adenosine-triphosphate (beta-ATP) ratios (2.16 vs. 1.83, p < 0.001), fasting serum glucose levels (83.3 vs. 98.7 mg/dl, p < 0.001), E/A (1.51 vs. 1.14 p < 0.001), and ejection fraction (EF, 65.3 vs. 59.9%, p = 0.005) were detected between the two groups of volunteers, younger and older than 41.7 years. Moreover, age correlated moderately to well with left ventricular PCr to beta-ATP ratios (r = -0.44), fasting serum glucose levels (r = 0.4), E/A (r = -0.7), left ventricular myocardial mass (r = -0.41), and EF (r = -0.55). In conclusion, our study shows that left ventricular PCr to beta-ATP ratios decrease moderately with age, as suggested by previous experimental animal studies. Additionally, age correlates negatively with E/A, left ventricular myocardial mass, and EF, as reported by previous echocardiography studies. The present study is the first to show the impact of age on left ventricular PCr to beta-ATP values in humans.  相似文献   

16.

Background

Blood-oxygen-level-dependent (BOLD) magnetic resonance imaging (MRI) can provide regional measurements of oxygen content using deoxyhemoglobin paramagnetic characteristics. The apparent relaxation rate or R2*(=1/T2*) can be determined from the slope of log (intensity) versus echo time and is directly proportional to the tissue content of deoxyhemoglobin. Thus, as the level of deoxyhemoglobin increases, T2* will decrease, leading to an increase in R2*. Chronic kidney disease (CKD) can affect oxygenation levels in renal parenchyma, which influences the clinical course of the disease. The goal of this study was to detect and assess renal oxygenation levels in CKD using BOLD MRI.

Methods

Fifteen healthy subjects and 11 patients with CKD underwent a renal scan using multigradient-recalled-echo sequence with eight echoes. R2* (1/s) of the renal cortex and medulla was measured on BOLD images. Of the 11 patients, nine had biopsy-proven chronic glomerulonephritis, and two had a similar diagnosis based on clinical symptoms and investigations.

Results

Mean medullary R2* (MR2*) and cortex R2* (CR2*) levels were significantly higher in patients (22 kidneys, MR2*=24.79±4.84 s−1, CR2*=18.97±2.72 s−1) than in controls (30 kidneys, MR2*=19.98±1.19 s−1, CR2*=16.03±1.23 s−1) (P<.01), and MR2* was increased more than CR2*. Medullary to cortical R2* ratios (MCR2*) of patients were significantly increased when compared with those of controls (P<.01). In the patient group, estimated glomerular filtration rate levels were greater than or equal to 60 ml/min/1.73 m2 in six patients (12 kidneys), whose MR2* and CR2* were also significantly higher than those of controls (P<.01). Serum creatinine levels were normal in seven patients (14 kidneys), whose MR2*, CR2* and MCR2* were also higher than those of controls (P<.01).

Conclusions

BOLD MRI can be used to evaluate changes in renal oxygenation in CKD, suggesting that it has the potential to be an excellent noninvasive tool for the evaluation of renal function.  相似文献   

17.
Proton MR measurements were performed in lyophilized urine samples collected from 5 normals (N) and 5 idiopathic hypercalciuric recurrent stone formers (SF). T1 and T2 relaxation times were measured with a Bruker PC Multispec at 20 MHz and 37 degrees C in the lyophilized samples and in samples gradually rehydrated. Significantly (p less than 0.01) prolonged T1 and T2 relaxation times were measured after addition of water to the lyophilized samples. The relaxation time prolongation patterns were significantly different (p less than 0.01) for the two groups; the rehydration curves of the lyophilized urine samples from the SF group had relatively shorter lag than that of N group. In calculations of water compartmentalization for similar water content, significant (p less than 0.01) differences in the fraction of bound water (FB) were found between the two groups. These results may reflect differences in the macromolecular properties, contents, in the amount of water binding sites and/or in the water multilayer thickness between the two groups. These differences, expressed as changes of the relaxation times values may provide new diagnostic possibilities of different renal pathologies.  相似文献   

18.
本研究应用质子磁共振波谱(1H MRS)技术对链脲佐菌素(STZ)诱导的1型糖尿病(T1DM)大鼠及长期胰岛素治疗的T1DM大鼠单侧海马的代谢物进行了分析. 结果发现,与对照组大鼠及胰岛素治疗组大鼠相比,T1DM模型组大鼠空腹血糖显著升高,体重显著降低(p < 0.05).T1DM模型组肌醇(Ins)、牛磺酸(Tau)与谷氨酸(Glu)浓度较对照组显著升高(p = 0.000、p = 0.003、p = 0.014).胰岛素治疗组Ins与Tau浓度较T1DM模型组显著降低(p = 0.000、p = 0.010),与对照组无差别;而Glu、谷氨酸和谷氨酰胺(Glx)浓度较对照组显著升高(p = 0.007、p = 0.042).本文结果表明T1DM大鼠海马区代谢物Ins浓度与Tau浓度对胰岛素治疗敏感.  相似文献   

19.
Present knowledge suggests that in glioblastoma multiforme the value of the apparent diffusion coefficient (ADC) is elevated in the solid part and hyperintense in T1, in spite of the elevated cellularity, and also in areas where peritumoral vasogenic edema is present. The purpose of our study has been to verify in vivo if the ADC increases in areas of solid tumor because of an increased presence of edema, like it happens in areas surrounding the tumor. Sixteen patients with histologically verified glioblastoma multiforme underwent a magnetic resonance (MR) examination with sequences: T1-weighted pre and post contrast, diffusion-weighted at b = 0 and b = 1000 s/mm(2), perfusion-weighted. One hundred sixty-five regions of interest (ROI) have been obtained for all set of patients. In each ROI we have estimated 4 parameters: ADC, intensity of T2-signal normalised to the white matter (SI(T2W)(n)), regional cerebral blood volume (rCBV), T1-signal enhancement (E%). With the SI(T2W)(n) the presence of edema was estimated. For each pair of measured parameters a statistical test of linear regression on the set of all ROI was made. A directed linear correlation between: ADC and SI(T2W)(n) (p 相似文献   

20.
To determine how administration of a hyperosmotic agent alters regional nuclear magnetic resonance (NMR) relaxation parameters and imaging characteristics in ischemic-reperfused myocardium, 7 dogs were infused with mannitol for 15 minutes before and after the release of a 3 hour left anterior descending coronary artery (LAD) occlusion. Nine control animals received normal saline during the 3 hour occlusion and 1 hour reperfusion periods. Normal posterior left ventricular (LV) wall and the ischemic anterior LV wall (risk area) myocardium was sampled for calculation of segmental microsphere myocardial blood flow, % tissue water content, NMR relaxation times (T1, T2) and myocyte ultrastructure using electron microscopy. Mean infarct T1 values were 14% greater than normal segments in saline-treated controls, but only 5% greater after mannitol. The difference in tissue water content between infarcted and normal segments was 4% in saline-treated (83 vs. 79%) compared to 2% in mannitol-treated dogs (79 vs. 77%). T1, T2 and % water content of control infarct segments were greater than treated infarcts (p less than 0.01). T1 and T2 rose as occlusion flow fell below 0.5 ml/min/g in control hearts but did not rise until flows were reduced to 0.1 ml/min/g in mannitol-treated hearts. Areas of increased signal in T1 and T2 NMR images correlated well with histochemical infarct volume (r = 0.98, SEE = 1.1 cc) in mannitol-treated dogs, but infarct borders were qualitatively less well-defined than in controls. We concluded that mannitol (1) diminishes tissue edema and reduces NMR relaxation parameters (T1, T2) in infarcted myocardium; and (2) attenuates the rise in T1 and T2 and ultrastructural myocyte injury in ischemic-reperfused myocardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号