首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thrombin binding aptamer (TBA) is a promising nucleic acid-based anticoagulant. We studied the effects of chemical modifications, such as dendrimer Trebler and NHS carboxy group, on TBA with respect to its structures and thrombin binding affinity. The two dendrimer modifications were incorporated into the TBA at the 5′ end and the NHS carboxy group was added into the thymine residues in the thrombin binding site of the TBA G-quadruplex (at T4, T13 and both T4/T13) using solid phase oligonucleotide synthesis. Circular dichroism (CD) spectroscopy confirmed that all of these modified TBA variants fold into a stable G-quadruplex. The binding affinity of TBA variants with thrombin was measured by surface plasmon resonance (SPR). The binding patterns and equilibrium dissociation constants (KD) of the modified TBAs are very similar to that of the native TBA. Molecular dynamics simulations studies indicate that the additional interactions or stability enhancement introduced by the modifications are minimized either by the disruption of TBA–thrombin interactions or destabilization elsewhere in the aptamer, providing a rational explanation for our experimental data. Overall, this study identifies potential positions on the TBA that can be modified without adversely affecting its structure and thrombin binding preference, which could be useful in the design and development of more functional TBA analogues.  相似文献   

2.
Previously we introduced the positively charged pyrrolidine-amide oligonucleotide mimics (POM), which possess a pyrrolidine ring and amide linkage in place of the sugar-phosphodiester backbone of natural nucleic acids. Short POM homo-oligomers have shown promising DNA and RNA recognition properties. However, to better understand the properties of POM and to assess their potential for use as modulators of gene expression and bioanalytical or diagnostic tools, more biologically relevant, longer, mixed-sequence oligomers need to be studied. In light of this, several mixed-sequence POM oligomers were synthesised, along with fluorescently labelled POM oligomers and a POM-peptide conjugate. UV thermal denaturation showed that mixed-sequence POMs hybridise to DNA and RNA with high affinity but slow rates of association and dissociation. The sequence specificity, influence of terminal amino acids, and the effect of pH and ionic strength on the DNA and RNA hybridisation properties of POM were extensively investigated. In addition, isothermal titration calorimetry (ITC) was used to investigate the thermodynamic parameters of the binding of a POM-peptide conjugate to DNA. Cellular uptake experiments have also shown that a fluorescently labelled POM oligomer is taken up into HeLa cells. These findings demonstrate that POM has the potential for use in a variety of applications, alongside other modified nucleic acids developed to date, such as peptide nucleic acids (PNA) and phosphoramidate morpholino oligomers (PMO).  相似文献   

3.
By using high-resolution NMR spectroscopy, the structures of a natural short interfering RNA (siRNA) and of several altritol nucleic acid (ANA)-modified siRNAs were determined. The interaction of modified siRNAs with the PAZ domain of the Argonaute 2 protein of Drosophila melanogaster was also studied. The structures show that the modified siRNA duplexes (ANA/RNA) adopt a geometry very similar to the naturally occurring A-type siRNA duplex. All ribose residues, except for the 3' overhang, show 3'-endo conformation. The six-membered altritol sugar in ANA occurs in a chair conformation with the nucleobase in an axial position. In all siRNA duplexes, two overhanging nucleotides at the 3' end enhance the stability of the first neighboring base pair by a stacking interaction. The first overhanging nucleotide has a rather fixed position, whereas the second overhanging nucleotide shows larger flexibility. NMR binding studies of the PAZ domain with ANA-modified siRNAs demonstrate that modifications in the double-stranded region of the antisense strand have some small effects on the binding affinity as compared with the unmodified siRNA. Modification of the 3' overhang with thymidine (dTdT) residues shows a sixfold increase in the binding affinity compared with the unmodified siRNA (relative binding affinity of 17% compared with dTdT-modified overhang), whereas modification of the 3' overhang with ANA largely decreases the binding affinity.  相似文献   

4.
5.
The staining of nucleic acids with fluorescent dyes is one of the most fundamental technologies in relevant areas of science. For reliable and quantitative analysis, the staining efficiency of the dyes should not be very dependent on the sequences of the specimens. However, this assumption has not necessarily been confirmed by experimental results, especially in the staining of ssDNA (and RNA). In this study, we found that both SYBR Green II and SYBR Gold did not stain either homopyrimidines or ssDNA composed of only adenine (A) and cytosine (C). However, these two dyes emit strong fluorescence when the ssDNA contains both guanine (G) and C (and/or both A and thymine (T)) and form potential Watson‐Crick base pairs. Interestingly, SYBR Gold, but not SYBR Green II, strongly stains ssDNA consisting of G and A (or G and T). Additionally, we found that the secondary structure of ssDNA may play an important role in DNA staining. To obtain reliable results for practical applications, sufficient care must be paid to the composition and sequence of ssDNA.  相似文献   

6.
Todorov TI  Morris MD 《Electrophoresis》2002,23(7-8):1033-1044
We present a study of the separation of RNA, single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in semidilute linear hydroxyethylcellulose (HEC) solution. Our results strive to provide a better understanding of the mechanisms of nucleic acid migration during electrophoresis in polymer solutions under native and denaturing conditions. From a study of the dependence of mobility on chain length and applied electric field, we found that RNA and ssDNA show better separation and higher resolution over a larger range of sizes compared to dsDNA. In addition, RNA reptation without orientation extends to longer chain lengths in comparison to ssDNA, possibly as a result of different type of short-lived secondary structure formations. Such a comparative study between nucleic acid capillary electrophoresis helps to optimize RNA separation and provides better understanding of RNA migration mechanisms in semidilute polymer solutions under denaturing conditions.  相似文献   

7.
Möhrle BP  Kumpf M  Gauglitz G 《The Analyst》2005,130(12):1634-1638
Locked nucleic acid (LNA) is a nucleic acid analogue containing 2'-O,4'-C-methylene-beta-D-ribofuranosyl nucleotides, which have a bicyclic furanose unit locked in a RNA mimicking sugar conformation. Oligonucleotides containing LNA monomers show an enhanced thermal stability and robustness against nuclease mediated cleavage. Therefore special tailored LNA is a versatile tool for gene array analysis and single nucleotide polymorphism (SNP) analysis. The higher melting temperatures result from a higher affinity between the LNA and its complementary base. This was verified by the determination of the affinity constants of the duplex formation of 3 oligonucleotides: DNA, L-DNA, in which all thymidines are substituted by LNA, and a fully modified LNA, to their complementary DNA strand. Affinity constants were calculated to be 1.5 x 10(9), 4.0 x 10(9) and >10(12) L mol(-1). This was done using the label free and time resolved sensing technology reflectometric interference spectroscopy (RIfS), in an assay format similar to a titration called binding inhibition assay.  相似文献   

8.
《化学:亚洲杂志》2017,12(23):3077-3087
One of the important determinants in the efficiency of a molecular interaction is the necessity for conformational changes in host and/or guest molecules upon binding. In small‐molecule interactions with nucleic acids, conformational changes on both molecules are often involved, especially in intercalating binding. Mismatch binding ligands (MBLs) we described here consist of two heterocycles that predominantly exist in one conformation, so it is of interest to determine if such molecules can bind to any DNA and RNA structures. One molecule, 1 ‐NHR, which predominantly exists as the unstacked conformation in aqueous solvent, has been successfully synthesized and characterized. Compound 1 ‐NHR did not efficiently bind to GX/Y DNA and RNA sequences, but the binding pattern is different from that of authentic MBL naphthyridine carbamate dimer. In vitro selection of RNA that specifically binds to 1 ‐NHR was performed from pre‐miR‐29a loop library RNA, and one RNA, to which 1 ‐NHR bound with high affinity, has been successfully identified. Although it was anticipated that 1 ‐NHR, with a predominantly unstacked conformation, would show entropy‐driven binding, isothermal titration calorimetry analysis suggested that the binding of 1 ‐NHR to RNA was enthalpy driven with an apparent K d of about 100 nm .  相似文献   

9.
Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA   总被引:12,自引:0,他引:12  
Locked nucleic acid is an RNA derivative in which the ribose ring is constrained by a methylene linkage between the 2'-oxygen and the 4'-carbon. This conformation restriction increases binding affinity for complementarity sequences and provides an exciting new chemical approach for the control of gene expression and optimization of microarrays.  相似文献   

10.
Spectroscopic and calorimetric techniques were employed to characterize and contrast the binding of the aminoglycoside paromomycin to three octamer nucleic acid duplexes of identical sequence but different strand composition (a DNA.RNA hybrid duplex and the corresponding DNA.DNA and RNA.RNA duplexes). In addition, the impact of paromomycin binding on both RNase H- and RNase A-mediated cleavage of the RNA strand in the DNA.RNA duplex was also determined. Our results reveal the following significant features: (i) Paromomycin binding enhances the thermal stabilities of the RNA.RNA and DNA.RNA duplexes to similar extents, with this thermal enhancement being substantially greater in magnitude than that of the DNA.DNA duplex. (ii) Paromomycin binding to the DNA.RNA hybrid duplex induces CD changes consistent with a shift from an A-like to a more canonical A-conformation. (iii) Paromomycin binding to all three octamer duplexes is linked to the uptake of a similar number of protons, with the magnitude of this number being dependent on pH. (iv) The affinity of paromomycin for the three host duplexes follows the hierarchy, RNA.RNA > DNA.RNA > DNA.DNA. (v) The observed affinity of paromomycin for the RNA.RNA and DNA.RNA duplexes decreases with increasing pH. (vi) The binding of paromomycin to the DNA.RNA hybrid duplex inhibits both RNase H- and RNase A-mediated cleavage of the RNA strand. We discuss the implications of our combined results with regard to the specific targeting of DNA.RNA hybrid duplex domains and potential antiretroviral applications.  相似文献   

11.
The discovery that synthetic short chain nucleic acids are capable of selective binding to biological targets has made them to be widely used as molecular recognition elements. These nucleic acids, called aptamers, are comprised of two types, DNA and RNA aptamers, where the DNA aptamer is preferred over the latter due to its stability, making it widely used in a number of applications. However, the success of the DNA selection process through Systematic Evolution of Ligands by Exponential Enrichment (SELEX) experiments is very much dependent on its most critical step, which is the conversion of the dsDNA to ssDNA. There is a plethora of methods available in generating ssDNA from the corresponding dsDNA. These include asymmetric PCR, biotin-streptavidin separation, lambda exonuclease digestion and size separation on denaturing-urea PAGE. Herein, different methods of ssDNA generation following the PCR amplification step in SELEX are reviewed.  相似文献   

12.
王勇  赵新颖  石冬冬  杨歌  屈锋 《色谱》2016,34(4):361-369
核酸适配体(aptamer)是通过指数富集配体系统进化(SELEX)技术筛选得到的核糖核酸(RNA)或单链脱氧核糖核酸(ssDNA)。核酸适配体通过高亲和力特异性地识别小分子、蛋白质、细胞、微生物等多种靶标,在生物、医药、食品和环境检测等领域的应用日渐增多。但目前实际可用的核酸适配体有限,其筛选过程复杂,筛选难度大,制约了其应用。与生物大分子、细胞和微生物等靶标不同,小分子靶标与核酸分子的结合位点少、亲和力弱,且靶标通常需要固定在载体上。此外,小分子靶标结合核酸形成的复合物与核酸自身的大小、质量、电荷性质等方面差异较小,二者的分离难度大。故小分子靶标的核酸适配体筛选过程与大分子和细胞等复合靶标相比有明显差异,筛选难度更大。因此需要根据其自身结构特点和核酸适配体的应用目的选定靶标或核酸库的固定方法,优化靶标核酸复合物的分离方法。本文介绍了不同类型小分子(具有基团差异的单分子、含相同基团分子和手性分子等)靶标的选择及其核酸适配体的筛选方法,并对核酸库的设计、与靶标结合的核酸的分离方法和亲和作用表征方法进行了介绍,列出了自2008年以来报道的40余种小分子靶标的核酸适配体序列和复合物的平衡解离常数(Kd)。  相似文献   

13.
A dual ligand (DL) system that combines high affinity streptavidin-biotin binding with lower affinity fibronectin-integrin ligand binding was developed to augment endothelial cell adhesion to polymers. In this study, we examined the utility of biotinylated fibronectin (bFN) as an enhancement to the previously developed DL approach. The goal was to make the system more amenable to clinical studies by eliminating xenogenic bovine serum albumin (bBSA). Fibronectin (FN) biotinylation was achieved with Sulfo-NHS-LC-Biotin. The affinity of conjugated biotin for wild-type streptavidin (WT-SA) and a mutant strain streptavidin (RGD-SA) was measured using surface plasmon resonance (SPR) spectroscopy. Enzyme-Linked ImmunoSorbent Assay (ELISA) absorbance values confirmed the accessibility of the cell binding domain on mildly biotinylated bFN when compared to unmodified native protein. SPR binding analysis confirmed similar binding behavior to bFN with WT-SA and RGD-SA. Kinetic analysis, however, showed no increase in affinity due to increased biotins per FN, an indication of the absence of positive cooperativity in the system. We verified the essential utility of bFN in affinity binding by SPR and confirmed the potential for integrin-FN linkages by ELISA. Finally, Vinculin immunostaining was used to determine focal adhesion formation using bFN in the DL system. Significantly greater focal adhesion density was achieved with the bFN in the DL system than with FN alone.  相似文献   

14.
A four-chamber microfluidic biochip is fabricated for the rapid detection of multiple proteins and nucleic acids from microliter volume samples with the technique of surface plasmon resonance imaging (SPRI). The 18 mm × 18 mm biochip consists of four 3 μL microfluidic chambers attached to an SF10 glass substrate, each of which contains three individually addressable SPRI gold thin film microarray elements. The 12-element (4 × 3) SPRI microarray consists of gold thin film spots (1 mm(2) area; 45 nm thickness), each in individually addressable 0.5 μL volume microchannels. Microarrays of single-stranded DNA and RNA (ssDNA and ssRNA, respectively) are fabricated by either chemical and/or enzymatic attachment reactions in these microchannels; the SPRI microarrays are then used to detect femtomole amounts (nanomolar concentrations) of DNA and proteins (ssDNA binding protein and thrombin via aptamer-protein bioaffinity interactions). Microarrays of ssRNA microarray elements are also used for the ultrasensitive detection of zeptomole amounts (femtomolar concentrations) of DNA via the technique of RNase H-amplified SPRI. Enzymatic removal of ssRNA from the surface due to the hybridization adsorption of target ssDNA is detected as a reflectivity decrease in the SPR imaging measurements. The observed reflectivity loss is proportional to the log of the target ssDNA concentration with a detection limit of 10 fM or 30 zeptomoles (18?000 molecules). This enzymatic amplified ssDNA detection method is not limited by diffusion of ssDNA to the interface, and thus is extremely fast, requiring only 200 s in the microliter volume format.  相似文献   

15.
BACKGROUND: The zinc finger (ZF) is the most abundant nucleic-acid-interacting protein motif. Although the interaction of ZFs with DNA is reasonably well understood, little is known about the RNA-binding mechanism. We investigated RNA binding to ZFs using the Zif268-DNA complex as a model system. Zif268 contains three DNA-binding ZFs; each independently binds a 3 base pair (bp) subsite within a 9 bp recognition sequence. RESULTS: We constructed a library of phage-displayed ZFs by randomizing the alpha helix of the Zif268 central finger. Successful selection of an RNA binder required a noncanonical base pair in the middle of the RNA triplet. Binding of the Zif268 variant to an RNA duplex containing a G.A mismatch (rG.A) is specific for RNA and is dependent on the conformation of the mismatched middle base pair. Modeling and NMR analyses revealed that the rG.A pair adopts a head-to-head configuration that counterbalances the effect of S-puckered riboses in the backbone. We propose that the structure of the rG.A duplex is similar to the DNA in the original Zif268-DNA complex. CONCLUSIONS: It is possible to change the specificity of a ZF from DNA to RNA. The ZF motif can use similar mechanisms in binding both types of nucleic acids. Our strategy allowed us to rationalize the interactions that are possible between a ZF and its RNA substrate. This same strategy can be used to assess the binding specificity of ZFs or other protein motifs for noncanconical RNA base pairs, and should permit the design of proteins that bind specific RNA structures.  相似文献   

16.
We report bis-phenylethynyl amide derivatives as a potent G-quadruplex binding small molecule scaffold. The amide derivatives were efficiently prepared in 3 steps by employing Sonogashira coupling, ester hydrolysis and a chemoselective amide coupling. Ligand-quadruplex recognition has been evaluated using a fluorescence resonance energy transfer (FRET) melting assay, surface plasmon resonance (SPR), circular dichroism (CD) and (1)H nuclear magnetic resonance (NMR) spectroscopy. While most of the G-quadruplex ligands reported so far comprise a planar, aromatic core designed to stack on the terminal tetrads of a G-quadruplex, these compounds are neither polycyclic, nor macrocyclic and have free rotation around the triple bond enabling conformational flexibility. Such molecules show very good binding affinity, excellent quadruplex:duplex selectivity and also promising discrimination between intramolecular promoter quadruplexes. Our results indicate that the recognition of the c-kit2 quadruplex by these ligands is achieved through groove binding, which favors the formation of a parallel conformation.  相似文献   

17.
Pyrrole-imidazole (Py-Im) polyamides containing stereospecifically alpha-amino- or alpha-hydroxyl-substituted gamma-aminobutyric acid as a 5'-TG-3' recognition element were synthesized by machine-assisted Fmoc solid-phase synthesis. Their binding properties to predetermined DNA sequences containing a core binding site of 5'-TGCNCA-3'/3'-ACGN'GT-5' (N.N' = A.T, T.A, G.C, and C.G) were then systematically studied by surface plasmon resonance (SPR). SPR results revealed that the pairing of stereospecifically alpha-amino-/alpha-hydroxyl-substituted gamma-aminobutyric acids, (R or S)-alpha,gamma-diaminobutyric acid (gammaRN or gammaSN) and (R or S)-alpha-hydroxyl-gamma-aminobutyric acid (gammaRO or gammaSO), side-by-side with beta-alanine (beta) in such polyamides significantly influenced the DNA binding affinity and recognition specificity of hairpin polyamides in the DNA minor groove compared with beta/beta, beta/gamma, and gamma/beta pairings. More importantly, the polyamide Ac-Im-gammaSO-ImPy-gamma-ImPybetaPy-beta-Dp (beta/gammaSO) favorably binds to a hairpin DNA containing a core binding site of 5'-TGCNCA-3'/3'-ACGN'GT-5' (N.N' = A.T) with dissociation equilibrium constant (K(D)) of 1.9 x 10(-)(7) M over N.N' = T.A with K(D) = 3.7 x 10(-)(6) M, with a 19-fold specificity. By contrast, Ac-Im-gammaSN-ImPy-gamma-ImPybetaPy-beta-Dp (beta/gammaSN) binds to the above sequence with N.N' = A.T with K(D) = 8.7 x 10(-)(7) M over N.N' = T.A with K(D) = 8.4 x 10(-)(6) M, with a 9.6-fold specificity. The results also show that the stereochemistry of the alpha-substituent, as well as the alpha-substituent itself may greatly alter binding affinity and recognition selectivity of hairpin polyamides to different DNA sequences. Further, we carried out molecular modeling studies on the binding by an energy minimization method, suggesting that alpha-hydroxyl is very close to N3 of the 3'-terminal G to induce the formation of hydrogen bonding between hydroxyl and N3 in the recognition event of the polyamide Ac-Im-gammaSO-ImPy-gamma-ImPybetaPy-beta-Dp (beta/gammaSO) to 5'-TGCNCA-3'/3'-ACGN'GT-5' (N.N' = A.T). Therefore, SPR assays and molecular modeling studies collectively suggest that the (S)-alpha-hydroxyl-gamma-aminobutyric acid (gammaSO) may act as a 5'-TG-3' recognition unit.  相似文献   

18.
The molecular recognition of polyoxometalates by human serum albumin is studied using two different polyoxometalates (POMs) at pH 7.5. The results are compared with those obtained at pH 3.5 and 9.0. At pH 7.5, both POMs strongly interact with the protein with different binding behaviors. The Keggin shaped POM, [H(2)W(12)O(40)](6-) (H2W12), specifically binds the protein, forming a complex with a 1:1 stoichiometry with Ka = 2.9 x 10(6) M(-1). The binding constant decreased dramatically with the increase of the ionic strength, thus indicating a mostly electrostatic binding process. Isothermal titration calorimetry (ITC) experiments show that the binding is an enthalpically driven exothermic process. For the wheel shaped POM [NaP(5)W(30)O(110)](14-) (P5W30), there are up to five binding sites on the protein. Increasing the ionic strength changes the binding behavior significantly, leading to a simple exothermic process, with several binding sites. Competitive binding experiments indicate that the two POMs share one common binding site. In addition, they show the existence of another important binding site for P5W30. The two POMs exhibit different binding dependences on the pH. The combination of the experimental results with the knowledge of the surface map of the protein in its N-B conformation transition domain leads to the proposal for the probable binding site of POMs. The present work reveals a protein conformation change upon P5W30 binding, a new feature not explicitly documented in previous studies.  相似文献   

19.
Mg2+ acts as a catalytic cofactor in many ribozymes and specifically bound divalent metal ions have been implicated in the stabilization of structural motifs that are essential for RNA folding. The accurate calculation of intrinsic affinity constants of M2+ to specific binding sites in nucleic acids is therefore of high importance. Methods classically applied to determine the affinity constants of metal ions to RNAs are summarized in the first part of this review, e.g. hydrolytic cleavage experiments, equilibrium dialysis, and spectroscopic techniques like EPR and NMR. However, the fact that several binding sites of similar affinities are often present in a single RNA molecule is mostly neglected. The most immediate consequence of several binding sites is that less than the total amount of M2+ is available to bind to a particular binding site at a given total concentration. We have recently introduced a new iterative procedure that tackles this problem and have developed a rapid calculation tool (ISTAR) that is available from the authors. Here, we explain this procedure in detail under different assumptions and illustrate how the intrinsic affinity constants for Mg2+ to a short RNA hairpin, a minimal domain 6 from the group II intron Sc.ai5γ, change. We use ISTAR to calculate intrinsic affinities and to validate a particular binding stoichiometry by judging the quality of the fit to the experimental data for a given model. This is important since weak coordination sites exhibiting similar binding affinities, and being thus in direct competition to each other, are a characteristic feature of nucleic acids. With ISTAR these binding affinities can be calculated more accurately within minutes and we can gain a better understanding of these crucial metal ion–nucleic acid interactions.  相似文献   

20.
Recognition of the sequences 5'-NGCACA-3' (N = T, A, C, G) by pyrrole/imidazole polyamides with (R/S)-alpha-hydroxyl/alpha-amino-substituted gamma-aminobutyric acid as a gamma-turn was investigated. Four novel polyamides, 2, 3, 4, and 5, including (R)-alpha-hydroxyl-gamma-aminobutyric acid (gammaRO), (S)-alpha-hydroxyl-gamma-aminobutyric acid (gammaSO), (R)-alpha,gamma-diaminobutyric acid (gammaRN), and (S)-alpha,gamma-diaminobutyric acid (gammaSN) residues, respectively, were synthesized, and their binding affinity to T.A, A.T, G.C, and C.G base pairs at turn position was studied by the surface plasmon resonance (SPR) technique. SPR data revealed that polyamide 3, AcImbetaImPy-gammaSO-ImPybetaPy-beta-Dp, with a gammaSO turn, possesses a marked binding preference for T.A over A.T with a 25-fold increase in specificity, despite low binding affinity relative to 2, with a gammaRO turn. Similarly, AcImbetaImPy-gammaSN-ImPybetaPy-beta-Dp (5), with a gammaSN-turn, gives rise to a 8.7-fold increase in specificity for T.A over A.T. Computer-assisted molecular modeling suggests that 3 binds more deeply in the minor groove of the T.A base pair relative to the A.T base pair, allowing hydrogen bonding to O2 of the thymine at the turn position, which explains the SPR results. These results suggest that gammaSO and gammaSN may function as T-recognition units at the turn position, as well as a gamma-turn in the discrimination of polyamides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号