首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A combination of in situ X-ray photoelectron spectroscopy analysis and ex situ scanning electron- and atomic force microscopy has been used to study the formation of copper islands upon Cu deposition at elevated temperatures as a basis for the guided growth of copper islands. Two different temperature regions have been found: (I) up to 250 °C only close packed islands are formed due to low diffusion length of copper atoms on the surface. The SiO2 film acts as a barrier protecting the silicon substrate from diffusion of Cu atoms from oxide surface. (II) The deposition at temperatures above 300 °C leads to the formation of separate islands which are (primarily at higher temperatures) crystalline. At these temperatures, copper atoms diffuse through the SiO2 layer. However, they are not entirely dissolved in the bulk but a fraction of them forms a Cu rich layer in the vicinity of SiO2/Si interface. The high copper concentration in this layer lowers the concentration gradient between the surface and the substrate and, consequently, inhibits the diffusion of Cu atoms into the substrate. Hence, the Cu islands remain on the surface even at temperatures as high as 450 °C.  相似文献   

2.
The effect of laser ablation on copper foil irradiated by a short 30 ns laser pulse was investigated by X-ray photoelectron spectroscopy. The laser fluence was varied from 8 to 16.5 J/cm2 and the velocity of the laser beam from 10 to 100 mm/s. This range of laser fluence is characterized by a different intensity of laser ablation. The experiments were done in two kinds of ambient atmosphere: air and argon jet gas.The chemical state and composition of the irradiated copper surface were determined using the modified Auger parameter (α′) and O/Cu intensity ratio. The ablation atmosphere was found to influence the size and chemical state of the copper particles deposited from the vapor plume. During irradiation in air atmosphere the copper nanoparticles react with oxygen and water vapor from the air and are deposited in the form of a CuO and Cu(OH)2 thin film. In argon atmosphere the processed copper surface is oxidized after exposure to air.  相似文献   

3.
The initial growth (1–20 Å) of Cu on Cr2O3 at room temperature has been investigated by Auger Spectroscopy and UV photoemission spectroscopy by synchrotron radiation. Analysis of the Auger peak intensities suggests that copper is growing in a layer-by-layer mode probably with the simultaneous formation of the second and third layers.The photoemission spectra show that deposited copper grows steadily as a single copper species which does not interact strongly with the substrate.  相似文献   

4.
We have investigated segregation of copper at the surface of V2O5 films deposited onto Cu substrate by employing surface analysis techniques. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) confirmed that the Cu is segregated at the surface and its chemical state is Cu2O. According to secondary ion mass spectroscopy (SIMS) and glow discharge spectroscopy (GDS), the Cu concentration inside the deposited V2O5 layer is low. Ultraviolet photoelectron spectroscopy (UPS) and scanning tunneling spectroscopy (STS) revealed the segregation alters the surface local density of states. Surface analysis of deposited samples in ultra high vacuum (UHV) condition verified that the segregation occurs during the deposition. We have extended kinetic tight binding Ising model (KTBIM) to explain the surface segregation during the deposition. Simulation data approve the possibility of surface segregation during room temperature deposition. These results point out that on pure Cu substrate, oxidation occurs during the segregation and low surface energy of Cu2O is the original cause of the segregation.  相似文献   

5.
The chemical composition of thin copper oxide films was studied by X-ray photoelectron spectroscopy (XPS). The films were obtained by magnetron sputtering of copper metal, which was simultaneously oxidized by atomic oxygen. It was demonstrated that a high rate of oxidation in molecular oxygen is achieved only under relatively low rates of film growth (v<100 Å/min). However, the growth rate of cupric oxide can be drastically increased to v>750 Å/min in a flow of accelerated oxygen atoms. High growth rates are necessary to substantially cut the thermal budget and reduce the diffuseness of heterofunctions in fabricating layered structures containing copper oxide.  相似文献   

6.
The erosion/sputtering of D2 films on an Au-substrate by 2 keV electrons is roughly inversely proportional to film thicknesses below ≈650 Å. The erosion yield decreases from 200 atoms/electron at 25 Å to 7.8 ± 0.5 for “bulk” targets. The thickness dependent region is apparently unrelated to the penetration depth of the electrons.  相似文献   

7.
Photoelectron and Auger spectra have been obtained for the copper and silver selenides CuSe, Cu 2Se, Ag 2Se, and AgCuSe as well as from CuS, Ag 2O, Ag 2S, Cu, and Ag. Binding-energy values, chemical shifts, and peak-shapes are reported for the Cu 3 d, Ag 4 d and Se 3 p electrons. Absence of multiplet splitting and shake-up structure is discussed in relation to the magnetic properties. It is shown that chemical shifts are much better revealed in the Auger spectra (Cu L3M4,5M4, 5 and Ag M5N4, 5N4, 5) than in the direct photoelectron ones. In addition the use of the Auger parameter to characterize the series under study is emphasized. Finally the valence-band spectra have been examined and the electronic structures are interpreted.  相似文献   

8.
《Applied Surface Science》1987,29(2):242-248
The growth of Cu film on MnO substrate at room temperature has been investigated using Auger electron spectroscopy. Analysis of the Auger peak intensity as a function of Cu coverage and comparison of the experimental results with predictions of a layer-by-layer growth model, suggest that, at least in the first 16 Å of coverage, the growth of copper takes place in a layer-by-layer mode, simultaneously with the diffusion of some copper in the MnO substrate.  相似文献   

9.
The magnetic properties of the magnetite Fe3O4(110) surface have been studied by spin resolved Auger electron spectroscopy (SRAES). Experimental spin resolved Auger spectra are presented. The results of calculation of Auger lines polarization carried out on the basis of electronic state density are presented. Problems related to magnetic moments of bivalent (Fe2+) and trivalent (Fe3+) ions on the Fe3O4(110) surface are discussed. It is established that the deposition of a thin bismuth film on the surface results in significant growth of polarization of iron Auger peaks, which is due to additional spin-orbit scattering of electrons by bismuth atoms.  相似文献   

10.
Thicknesses of oxides on Si or Al can be determined up to about 120 Å using Auger electron spectroscopy, without ion-mill depth profiling, by using the ratio of the chemically shifted and unshifted peaks from the oxide and substrate, respectively. Measurement standard deviations of ± 1 Å at oxide thickness of 30 Å and spatial resolution < 10 μm are readily attainable. The absolute accuracy of the present calibration is about ± 30% at 30 Å for SiO2. A comparison of the measured thickness d with ellipsometry revealed a disagreement which was largest at d(ellips.) = 50 A?, where d(Auger) was 33 Å. We propose that most of this disagreement is a consequence of the finite extent of the oxide/Si interface, and the measurement of different physical parameters in the two techniques. It is demonstrated that the milling rate of SiO2 (within about 100 Å from the SiO2/Si interface) can be determined from ion-mill depth profiles alone and the position of the interface in the depth profile can be located within serveral Å. The electron mean free path in SiO2 at 1615 eV was determined to be 31 ± 9 Å.  相似文献   

11.
Cu/SiO2 catalysts with different bimodal pore structures adjusted by the ratio of HMS and silica sol were prepared via modified impregnation method. Structure evolutions of the catalyst were systematically characterized by N2-physisorption, X-ray diffraction, H2 temperature-programmed reduction, N2O titration and X-ray photoelectron spectroscopy. The results show that the composite silica supported copper catalysts showed remarkably enhanced catalytic performance in the selective hydrogenation of dimethyl oxalate to ethylene glycol compared to the individual silica supported ones obtained by the same method. The dimethyl oxalate conversion and the ethylene glycol selectivity can reach 100% and 98% at 473 K with 2.5 MPa H2 pressure and 1.5 h−1 liquid hour space velocity of dimethyl oxalate over the optimized Cu/SiO2 catalyst. The remarkably enhanced catalytic performance of Cu/SiO2 catalysts might be attributed to the homogeneous dispersion and uniformity of the active copper species and to the larger copper surface areas attained on the HMS supports with large pore diameters and surface areas.  相似文献   

12.
Surface‐sensitive analysis via extended X‐ray absorption fine‐structure (EXAFS) spectroscopy is demonstrated using a thickness‐defined SiO2 (12.4 nm)/Si sample. The proposed method exploits the differential electron yield (DEY) method wherein Auger electrons escaping from a sample surface are detected by an electron analyzer. The DEY method removes local intensity changes in the EXAFS spectra caused by photoelectrons crossing the Auger peak during X‐ray energy sweeps, enabling EXAFS analysis through Fourier transformation of wide‐energy‐range spectral oscillations. The Si K‐edge DEY X‐ray absorption near‐edge structure (XANES) spectrum appears to comprise high amounts of SiO2 and low Si content, suggesting an analysis depth, as expressed using the inelastic mean free path of electrons in general electron spectroscopy, of approximately 4.2 nm. The first nearest neighbor (Si—O) distance derived from the Fourier transform of the Si K‐edge DEY‐EXAFS oscillation is 1.63 Å. This value is within the reported values of bulk SiO2, showing that DEY can be used to detect a surface layer of 12.4 nm thickness with an analysis depth of approximately 4.2 nm and enable `surface EXAFS' analysis using Fourier transformation.  相似文献   

13.
The distribution of single dopant or impurity atoms can dramatically alter the properties of semiconductor materials. The sensitivity to detect and localize such single atoms has been greatly improved by the development of aberration correctors for scanning transmission electron microscopes. Today, electron probes with diameters well below 1 Å are available thanks to the improved electron optics. Simultaneous acquisition of image signals and electron energy-loss spectroscopy data provides means of characterization of defect structures in semiconductors with unprecedented detail. In addition to an improvement of the lateral spatial resolution, depth sensitivity is greatly enhanced because of the availability of larger probe forming angles. We report the characterization of an alternate gate dielectric interface structure. Isolated Hf atoms are directly imaged within a SiO2 thin film formed between an HfO2 layer and the silicon substrate. Electron energy-loss spectroscopy shows significant changes of the silicon valence state across the interface structure.  相似文献   

14.
When heated by high-energy electron beam (EB), SiC can decompose into C and Si vapor. Subsequently, Si vapor reacts with metal oxide thin film on substrate surface and formats dense SiO2 thin film at high substrate temperature. By means of the two reactions, SiC/SiO2 composite thin film was prepared on the pre-oxidized 316 stainless steel (SS) substrate by electron beam-physical vapor deposition (EB-PVD) only using β-SiC target at 1000 °C. The thin film was examined by energy dispersive spectroscopy (EDS), grazing incidence X-ray asymmetry diffraction (GIAXD), scanning electron microscopy (SEM), atomic force microscopy (AFM), backscattered electron image (BSE), electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Fourier transformed infra-red (FT-IR) spectroscopy. The analysis results show that the thin film is mainly composed of imperfect nano-crystalline phases of 3C-SiC and SiO2, especially, SiO2 phase is nearly amorphous. Moreover, the smooth and dense thin film surface consists of nano-sized particles, and the interface between SiC/SiO2 composite thin film and SS substrate is perfect. At last, the emissivity of SS substrate is improved by the SiC/SiO2 composite thin film.  相似文献   

15.
A study of the mechanism governing the initial stages in silicide formation under deposition of 1–10 monolayers of cobalt on a heated Si(111) 7×7 crystal is reported. The structural data were obtained by an original method of diffraction of inelastically scattered medium-energy electrons, which maps the atomic structure of surface layers in real space. The elemental composition of the near-surface region to be analyzed was investigated by Auger electron spectroscopy. Reactive epitaxy is shown to stimulate epitaxial growth of a B-oriented CoSi2(111) film on Si(111). In the initial stages of cobalt deposition (1–3 monolayers), the growth proceeds through island formation. The near-surface layer of a CoSi2(111) film about 30 Å thick does not differ in elemental composition from the bulk cobalt disilicide, and the film terminates in a Si-Co-Si monolayer triad.  相似文献   

16.
Electron energy losses were measured as a function of the incidence angle of the primary electron beam for the Co/Cu(1 1 1) adsorption system. The measurements performed for the clean and covered substrate reveal characteristic intensity maxima associated with the close packed rows of atoms, as it was observed in the so called directional Auger and directional elastic peak electron spectroscopy profiles. The incidence angle dependent signal of electron energy losses measured for the clean (Cu 3p3/2) and covered (Co 3p3/2) substrate gives the so called directional electron energy loss spectroscopy (DEELS) profiles which contain structural as well as chemical information. The scattering of primaries and different emission processes associated with electron energy losses, Auger, and elastically backscattered electrons are discussed. A change in the hCu (Cu M2,3VV transition) Auger signal recorded during the continuous cobalt deposition shows that the growth mode is not a pure layer by layer type. The complete covering of the substrate by Co at higher coverages is confirmed by the comparison between experimental and theoretical ratios of the Auger peak heights.  相似文献   

17.
The initial growth of Cu on polycrystalline manganese at room temperature has been investigated by Auger Spectroscopy and UV-synchrotron radiation photoemission spectroscopy, for copper coverages ranging from 1 to 18 Å. By monitoring the changes of the Cu3d level, a strong intermixing at the interface has been observed. The simultaneous growth of a copper phase which is lying on top of the intermixed region has also been detected. Analysis of the Auger data indicates that copper is most probably growing in a layer-by-layer mode, with a simultaneous diffusion into the substrate. Calculations for a layer-by-layer growth model are compared with the experimental data. They support our analysis.  相似文献   

18.
A three-dimensional (3D) reconstruction of the atomic structure of the (100) surface of a 1T-TiSe2 layered dichalcogenide crystal has been performed from X-ray photoelectron and Auger electron diffraction data. The diffraction patterns of the emission of Auger electrons of Se(LMM) selenium and photoelectrons of Ti2p titanium have been considered as holographic diagrams. Being processed with the scattering pattern extraction algorithm using the maximum entropy method (SPEA-MEM), they provide individual 3D images of the nearest environment of selenium and titanium atoms in the TiSe2 lattice. Using reconstructed 3D images, the positions of 128 atoms in the 2 × 2 × 1.5-nm region of the surface layer of TiSe2 have been determined. The structure of the surface has a 1T polytype. Interatomic distances in the layer and van der Waals gap are larger than the respective parameters in the bulk of the crystal. It is assumed that titanium layers in two Se-Ti-Se upper surface structural units are displaced along the [001] axis. The structure of the surface layer can be described by a unit cell of the P3 space group with the parameters a = 3.85 Å and c = 14.4 Å.  相似文献   

19.
Single crystals of the Cu x TiSe2 compound with x = 0.05, 0.09, and 0.33 have been grown. Resonance photoelectron Cu 3p-3d and 2d-3d spectra of the valence bands, the spectra of the core levels, and the L absorption spectra for titanium and copper have been obtained. It is shown that the degree of oxidation of titanium atoms is +4 and the state of copper atoms is close to the state of free copper ions. It is found that the spectra of the valence bands obtained under the Cu 3p and 2p resonance conditions radically differ. For the spectra in the Cu 2p excitation regime, several bands corresponding to different decay channels of the excited state are observed. According to calculations of the density of states, the 3d states of copper are filled incompletely; the occupancy of the 3d band of copper is 9.5 electrons per atom.  相似文献   

20.
The formation of the Co/Si(110)16 × 2 interface and its magnetic properties are studied by high-energy-resolution photoelectron spectroscopy using synchrotron radiation and magnetic linear dichroism in the photoemission of core electrons. It is shown that a cobalt coating less than 7 Å thick deposited on the silicon surface at room temperature results in the formation of an ultrathin (1.7 Å) interfacial cobalt silicide layer and a layer of silicon-cobalt solid solution. The ferromagnetic ordering of the interface is observed at an evaporation dose corresponding to 6–7 Å in which case a cobalt metal film begins to grow on the solid solution layer. During 300°C-annealing of the sample covered by a nanometer-thick cobalt layer, the metal film gradually disappears and four silicide phases arise: metastable ferromagnetic silicide Co3Si and three stable nonmagnetic silicides (Co2Si, CoSi, and CoSi2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号