首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of 3,5-(CF(3))(2)PzLi with [Rh(μ-Cl)(η(2)-C(2)H(4))(2)](2) or [Rh(μ-Cl)(PMe(3))(2)](2) in Et(2)O gave the dinuclear complexes [Rh(η(2)-C(2)H(4))(2)(μ-3,5-(CF(3))(2)-Pz)](2) (1) and [Rh(2)(μ-Cl)(μ-3,5-(CF(3))(2)-Pz) (PMe(3))(4)] (2) respectively (3,5-(CF(3))(2)Pz = bis-trifluoromethyl pyrazolate). Reaction of PMe(3) with [Rh(COD)(μ-3,5-(CF(3))(2)-Pz)](2) in toluene gave [Rh(3,5-(CF(3))(2)-Pz)(PMe(3))(3)] (3). Reaction of 1 and 3 in toluene (1?:?4) gave moderate yields of the dinuclear complex [Rh(PMe(3))(2)(μ-3,5-(CF(3))(2)-Pz)](2) (4). Reaction of 3,5-(CF(3))(2)PzLi with [Rh(PMe(3))(4)]Cl in Et(2)O gave the ionic complex [Rh(PMe(3))(4)][3,5-(CF(3))(2)-Pz] (5). Two of the complexes, 1 and 3, were studied for use as CVD precursors. Polycrystalline thin films of rhodium (fcc-Rh) and metastable-amorphous films of rhodium phosphide (Rh(2)P) were grown from 1 and 3 respectively at 170 and 130 °C, 0.3 mmHg in a hot wall reactor using Ar as the carrier gas (5 cc min(-1)). Thin films of amorphous rhodium and rhodium phosphide (Rh(2)P) were grown from 1 and 3 at 170 and 130 °C respectively at 0.3 mmHg in a hot wall reactor using H(2) as the carrier gas (7 cc min(-1)).  相似文献   

2.
Cotton FA  Murillo CA  Wang X  Yu R 《Inorganic chemistry》2004,43(26):8394-8403
Reaction of racemic cis-Rh(2)(C(6)H(4)PPh(2))(2)(OAc)(2)(HOAc)(2) with excess Me(3)OBF(4) in CH(3)CN results in the formation of racemic cis-[Rh(2)(C(6)H(4)PPh(2))(2)(CH(3)CN)(6)](BF(4))(2).0.5H(2)O (1.0.5H(2)O), an ionic dirhodium complex which has two cisoid nonlabile orthometalated phosphine bridging anions and six labile CH(3)CN ligands in equatorial and axial positions. Reactions of 1 with tetraethylammonium salts of the linear dicarboxylates, oxalate, terephthalate, and 4,4'-biphenyl-dicarboxylate, in organic solvents, produced racemic crystals of the triangular compounds [Rh(2)(C(6)H(4)PPh(2))(2)](3)(C(2)O(4))(3)(py)(6).6MeOH.H(2)O (2.6MeOH.H(2)O), [Rh(2)(C(6)H(4)PPh(2))(2)](3)(O(2)CC(6)H(4)CO(2))(3)(DMF)(6).6.5DMF.0.5H(2)O (3.6.5DMF.0.5H(2)O), and [Rh(2)(C(6)H(4)PPh(2))(2)](3)(O(2)CC(6)H(4)C(6)H(4)CO(2))(3)(py)(6).4.5CH(3)OH.0.75H(2)O (4.4.5CH(3)OH.0.75H(2)O), respectively. All compounds are electrochemically active. The relative chiralities of the dirhodium units in each triangle have been established using a combination of data from X-ray crystallography and (31)P NMR spectroscopy.  相似文献   

3.
The adducts formed between the antitumor active compounds [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2), Rh(2)(O(2)CCH(3))(4), and Rh(2)(O(2)CCF(3))(4) with DNA oligonucleotides have been assessed by matrix-assisted laser desorption ionization (MALDI) and nanoelectrospray (nanoESI) coupled to time-of-flight mass spectrometry (TOF MS). A series of MALDI studies performed on dipurine (AA, AG, GA, and GG)-containing single-stranded oligonucleotides of different lengths (tetra- to dodecamers) led to the establishment of the relative reactivity cis-[Pt(NH(3))(2)(OH(2))(2)](2+) (activated cisplatin) approximately Rh(2)(O(2)CCF(3))(4) > cis-[Pt(NH(3))(2)Cl(2)] (cisplatin) > [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2) > Rh(2)(O(2)CCH(3))(4) approximately Pt(C(6)H(6)O(4))(NH(3))(2) (carboplatin). The relative reactivity of the complexes is associated with the lability of the leaving groups. The general trend is that an increase in the length of the oligonucleotide leads to enhanced reactivity for Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2) and Rh(2)(O(2)CCH(3))(4) (except for the case of [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](2+), which reacts faster with the GG octamers than with the dodecamers), whereas the reactivity of Rh(2)(O(2)CCF(3))(4) is independent of the oligonucleotide length. When monitored by ESI, the dodecamers containing GG react faster than the respectiveAA oligonucleotides in reactions with Rh(2)(O(2)CCF(3))(4) and Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2), whereas AA oligonucleotides react faster with Rh(2)(O(2)CCH(3))(4). The mixed (AG, GA) purine sequences exhibit comparable rates of reactivity with the homopurine (AA, GG) dodecamers in reactions with Rh(2)(O(2)CCH(3))(4). The observation of initial dirhodium-DNA adducts with weak axial (ax) interactions, followed by rearrangement to more stable equatorial (eq) adducts, was achieved by electrospray ionization; the Rh-Rh bond as well as coordinated acetate or acetonitrile ligands remain intact in these dirhodium-DNA adducts. MALDI in-source decay (ISD), collision-induced dissociation (CID) MS-MS, and enzymatic digestion studies followed by MALDI and ESI MS reveal that, in the dirhodium compounds studied, the purine sites of the DNA oligonucleotides interact with the dirhodium core. Ultimately, both MALDI and ESI MS proved to be complementary, valuable tools for probing the identity and stability of dinuclear metal-DNA adducts.  相似文献   

4.
Reaction of C(60) with CF(3)I at 550 degrees C, which is known to produce a single isomer of C(60)(CF(3))(2,4,6) and multiple isomers of C(60)(CF(3))(8,10), has now been found to produce an isomer of C(60)(CF(3))(6) with the C(s)-C(60)X(6) skew-pentagonal-pyramid (SPP) addition pattern and an epoxide with the C(s)-C(60)X(4)O variation of the SPP addition pattern, C(s)-C(60)(CF(3))(4)O. The structurally similar epoxide C(s)-C(60)(C(2)F(5))(4)O is one of the products of the reaction of C(60) with C(2)F(5)I at 430 degrees C. The three compounds have been characterized by mass spectrometry, DFT quantum chemical calculations, Raman, visible, and (19)F NMR spectroscopy, and, in the case of the two epoxides, single-crystal X-ray diffraction. The compound C(s)-C(60)(CF(3))(6) is the first [60]fullerene derivative with adjacent R(f) groups that are sufficiently sterically hindered to cause the (DFT-predicted) lengthening of the cage (CF(3))C-C(CF(3)) bond to 1.60 A as well as to give rise to a rare, non-fast-exchange-limit (19)F NMR spectrum at 20 degrees C. The compounds C(s)-C(60)(CF(3))(4)O and C(s)-C(60)(C(2)F(5))(4)O are the first poly(perfluoroalkyl)fullerene derivatives with a non-fluorine-containing exohedral substituent and the first fullerene epoxides known to be stable at elevated temperatures. All three compounds demonstrate that the SPP addition pattern is at least kinetically stable, if not thermodynamically stable, at temperatures exceeding 400 degrees C. The high-temperature synthesis of the two epoxides also indicates that perfluoroalkyl substituents can enhance the thermal stability of fullerene derivatives with other substituents.  相似文献   

5.
The synthesis of a penta(1-methylpyrazole)ferrocenyl phosphine oxide ligand (1) [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))] is reported together with its X-ray crystal structure. Its self-assembly behavior with a dirhodium(II) tetraoctanoate linker (2) [Rh(2)(O(2)CC(7)H(15))(4)] was investigated for construction of fullerene-like assemblies of composition [(ligand)(12)(linker)(30)]. Reaction between 1 and 2 in acetonitrile resulted in the formation of a light purple precipitate (3). Evidence for the ligand-to-linker ratio of 1:2.5 expected for a fullerene-like structure [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))](12)[Rh(2)(O(2)CC(7)H(15))(4)](30) was obtained from (1)H NMR and elemental analysis. IR and Raman studies confirmed the diaxially bound coordination environment of the dirhodium linker by comparing the stretching frequencies of the carboxylate group and the rhodium-rhodium bond with those in model compound (5), [Rh(2)(O(2)CC(7)H(15))(4)](C(3)H(3)N(2)CH(3))(2), the bis-adduct of linker 2 with 1-methylpyrazole. X-ray powder diffraction and molecular modeling studies provide additional support for the formation of a spherical molecule topologically identical to fullerene with a diameter of approximately 38 ? and a molecular formula of [(1)(12)(2)(30)]. Dissolution of 3 in tetrahydrofuran (THF) followed by layering with acetonitrile afforded purple crystals of [(1)(2)(2)](∞) (6) [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))][Rh(2)(O(2)CC(7)H(15))(4)](2) with a two-dimensional polymeric structure determined by X-ray crystallography. The dirhodium linkers link ferrocenyl units by coordination to the pyrazoles but only four of the five pyrazole moieties of the pentapyrazole ligand are coordinated. The ligand-to-linker ratio of 1:2 in 6 was confirmed by (1)H NMR spectroscopy and elemental analysis, while results from IR and Raman are in agreement with the diaxially coordinated environment of the linker observed in the solid state.  相似文献   

6.
[Rh(Cp)Cl(mu-Cl)](2) (Cp = pentamethylcyclopentadienyl) reacts (i) with [Au(NH=CMe(2))(PPh(3))]ClO(4) (1:2) to give [Rh(Cp)(mu-Cl)(NH=CMe(2))](2)(ClO(4))(2) (1), which in turn reacts with PPh(3) (1:2) to give [Rh(Cp)Cl(NH=CMe(2))(PPh(3))]ClO(4) (2), and (ii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:2 or 1:4) to give [Rh(Cp)Cl(NH=CMe(2))(2)]ClO(4) (3) or [Rh(Cp)(NH=CMe(2))(3)](ClO(4))(2).H(2)O (4.H(2)O), respectively. Complex 3 reacts (i) with XyNC (1:1, Xy = 2,6-dimethylphenyl) to give [Rh(Cp)Cl(NH=CMe(2))(CNXy)]ClO(4) (5), (ii) with Tl(acac) (1:1, acacH = acetylacetone) or with [Au(acac)(PPh(3))] (1:1) to give [Rh(Cp)(acac)(NH=CMe(2))]ClO(4) (6), (iii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:1) to give 4, and (iv) with (PPN)Cl (1:1, PPN = Ph(3)P=N=PPh(3)) to give [Rh(Cp)Cl(imam)]Cl (7.Cl), which contains the imam ligand (N,N-NH=C(Me)CH(2)C(Me)(2)NH(2) = 4-imino-2-methylpentan-2-amino) that results from the intramolecular aldol-type condensation of the two acetimino ligands. The homologous perchlorate salt (7.ClO(4)) can be prepared from 7.Cl and AgClO(4) (1:1), by treating 3 with a catalytic amount of Ph(2)C=NH, in an atmosphere of CO, or by reacting 4with (PPN)Cl (1:1). The reactions of 7.ClO(4) with AgClO(4) and PTo(3) (1:1:1, To = C(6)H(4)Me-4) or XyNC (1:1:1) give [Rh(Cp)(imam)(PTo(3))](ClO(4))(2).H(2)O (8) or [Rh(Cp)(imam)(CNXy)](ClO(4))(2) (9), respectively. The crystal structures of 3 and 7.Cl have been determined.  相似文献   

7.
Secondary phosphane oxides, R(2)P(O)H, are commonly used as preligands for transition-metal complexes of phosphinous acids, R(2)P-OH (R=alkyl, aryl), which are relevant as efficient catalysts in cross-coupling processes. In contrast to previous work by other groups, we are interested in the ligating properties of an electron-deficient phosphinous acid, (R(f))(2)P-OH, bearing the strongly electron-withdrawing and sterically demanding 2,4-bis(trifluoromethyl)phenyl group towards catalysis-relevant metals, such as palladium and platinum. The preligand bis[2,4-bis(trifluoromethyl)phenyl]phosphane oxide, (R(f))(2)P(O)H, reacts smoothly with solid platinum(II) dichloride yielding the trans-configured phosphinous acid platinum complex trans-[PtCl(2)({2,4-(CF(3))(2)C(6)H(3)}(2)POH)(2)]. The deprotonation of one phosphinous acid ligand with an appropriate base leads to the cis-configured monoanion complex cis-[PtCl(2)({2,4-(CF(3))(2)C(6)H(3)}(2)PO)(2)H](-), featuring the quasi-chelating phosphinous acid phosphinito unit, (R(f))(2)P-O-H···O=P(R(f))(2), which exhibits a strong hydrogen bridge substantiated by an O···O distance of 245.1(4) pm. The second deprotonation step is accompanied by a rearrangement to afford the trans-configured dianion trans-[PtCl(2)({2,4-(CF(3))(2)C(6)H(3)}(2)PO)(2)](2-). The reaction of (R(f))(2)P(O)H with solid palladium(II) dichloride initially yields a mononuclear palladium complex [PdCl(2)({2,4-(CF(3))(2)C(6)H(3)}(2)POH)(2)], which condenses under liberation of HCl to the neutral dinuclear palladium complex [Pd(2)(μ-Cl)(2){({2,4-(CF(3))(2)C(6)H(3)}(2)PO)(2)H}(2)]. The equilibrium between the mononuclear [PdCl(2)({2,4-(CF(3))(2)C(6)H(3)}(2)POH)(2)] and dinuclear [Pd(2)(μ-Cl)(2){({2,4-(CF(3))(2)C(6)H(3)}(2)PO)(2)H}(2)] palladium complexes is reversible and can be shifted in each direction by the addition of base or HCl, respectively. Treatment of palladium(II) hexafluoroacetylacetonate, [Pd(F(6)acac)(2)], with a slight excess of (R(f))(2)P(O)H yields the complex [Pd(F(6)acac)({2,4-(CF(3))(2)C(6)H(3)}(2)PO)(2)H]. The quasi-chelating phosphinous acid phosphinito unit, which is formed by the liberation of HF(6)acac, is characterized by a O···O distance of 244.1(3) pm. These transition metal complexes are stable towards air and moisture and can be stored for months without any evidence of decomposition.  相似文献   

8.
The reactions of molybdenum(0) and rhodium(I) olefin containing starting materials with the carbenoid group 13 metal ligator ligand GaR (R = Cp*, DDP; Cp* = pentamethylcyclopentadienyl, DDP = HC(CMeNC(6)H(3)-2,6-(i)Pr(2))(2)) were investigated and compared. Treatment of [Mo(η(4)-butadiene)(3)] with GaCp* under hydrogen atmosphere at 100 °C yields the homoleptic, hexa coordinated, and sterically crowded complex [Mo(GaCp*)(6)] (1) in good yields ≥50%. Compound 1 exhibits an unusual and high coordinated octahedral [MoGa(6)] core. Similarly, [Rh(GaCp*)(5)][CF(3)SO(3)] (2) and [Rh(GaCp*)(5)][BAr(F)] (3) (BAr(F) = B{C(6)H(3)(CF(3))(2)}(4)) are prepared by the reaction of GaCp* with the rhodium(I) compound [Rh(coe)(2)(CF(3)SO(3))](2) (coe = cyclooctene) and subsequent anion exchange in case of 3. Compound 2 features a trigonal bipyramidal [RhGa(5)] unit. In contrast, reaction of excess Ga(DDP) with [Rh(coe)(2)(CF(3)SO(3))](2) does not result in a high coordinated homoleptic complex but instead yields [(coe)(toluene)Rh{Ga(DDP)}(CF(3)SO(3))] (4). The common feature of 2 and 4 in the solid state structure is the presence of short CF(3)SO(2)O···Ga contacts involving the GaCp* or rather the Ga(DDP) ligand. Compounds 1, 2, and 4 have been fully characterized by single crystal X-ray diffraction, variable temperature (1)H and (13)C NMR spectroscopy, IR spectroscopy, mass spectrometry, as well as elemental analysis.  相似文献   

9.
Dias HV  Jin W  Kim HJ  Lu HL 《Inorganic chemistry》1996,35(8):2317-2328
The fluorinated tris(pyrazolyl)borate ligands [HB(3,5-(CF(3))(2)Pz)(3)](-) and [HB(3-(CF(3))Pz)(3)](-) (where Pz = pyrazolyl) have been synthesized as their sodium salts from the corresponding pyrazoles and NaBH(4) in high yield. These sodium complexes and the related [HB(3,5-(CF(3))(2)Pz)(3)]K(DMAC) were used as ligand transfer agents in the preparation of the copper and silver complexes [HB(3,5-(CF(3))(2)Pz)(3)]Cu(DMAC), [HB(3,5-(CF(3))(2)Pz)(3)]CuPPh(3), [HB(3,5-(CF(3))(2)Pz)(3)]AgPPh(3), and [HB(3-(CF(3))Pz)(3)]AgPPh(3). Metal complexes of the fluorinated [HB(3,5-(CF(3))(2)Pz)(3)](-) ligand have highly electrophilic metal sites relative to their hydrocarbon analogs. This is evident from the formation of stable adducts with neutral oxygen donors such as H(2)O, dimethylacetamide, or thf. Furthermore, the metal compounds derived from fluorinated ligands show fairly long-range coupling between fluorines of the trifluoromethyl groups and the hydrogen, silver, or phosphorus. The solid state structures show that the fluorines are in close proximity to these nuclei, thus suggesting a possible through-space coupling mechanism. Crystal structures of the sodium adducts exhibit significant metal-fluorine interactions. The treatment of [HB(3,5-(CF(3))(2)Pz)(3)]Na(H(2)O) with Et(4)NBr led to [Et(4)N][HB(3,5-(CF(3))(2)Pz)(3)], which contains a well-separated [Et(4)N](+) cation and the [HB(3,5-(CF(3))(2)Pz)(3)](-) anion in the solid state. Crystal data with Mo Kalpha (lambda = 0.710 73 ?) at 193 K: [HB(3,5-(CF(3))(2)Pz)(3)]Na(H(2)O), C(15)H(6)BF(18)N(6)NaO, a = 7.992(2) ?, b = 15.049(2) ?, c = 9.934(2) ?, beta = 101.16(2) degrees, monoclinic, P2(1)/m, Z = 2; [{HB(3-(CF(3))Pz)(3)}Na(thf)](2), C(32)H(30)B(2)F(18)N(12)Na(2)O(2), a = 9.063(3) ?, b = 10.183(2) ?, c = 12.129(2) ?, alpha = 94.61(1) degrees, beta = 101.16(2) degrees, gamma = 95.66(2) degrees, triclinic, &Pmacr;1, Z = 1; [HB(3,5-(CF(3))(2)Pz)(3)]Cu(DMAC), C(19)H(13)BCuF(18)N(7)O, a = 15.124(4) ?, b = 8.833(2) ?, c = 21.637(6) ?, beta = 105.291(14) degrees, monoclinic, P2(1)/n, Z = 4; [HB(3,5-(CF(3))(2)Pz)(3)]CuPPh(3), C(33)H(19)BCuF(18)N(6)P, a = 9.1671(8) ?, b = 14.908(2) ?, c = 26.764(3) ?, beta = 94.891(1) degrees, monoclinic, P2(1)/c, Z = 4; [HB(3,5-(CF(3))(2)Pz)(3)]AgPPh(3).0.5C(6)H(14), C(36)H(26)AgBF(18)N(6)P, a = 13.929(2) ?, b = 16.498(2) ?, c = 18.752(2) ?, beta = 111.439(6) degrees, monoclinic, P2(1)/c, Z = 4; [Et(4)N][HB(3,5-(CF(3))(2)Pz)(3)], C(23)H(24)BF(18)N(7), a = 10.155(2) ?, b = 18.580(4) ?, c = 16.875(5) ?, beta = 99.01(2) degrees, monoclinic, P2(1)/n, Z = 4.  相似文献   

10.
2-Phosphanylethylcyclopentadienyl lithium compounds, Li[C(5)R'(4)(CH(2))(2)PR(2)] (R = Et, R' = H or Me, R = Ph, R' = Me), have been prepared from the reaction of spirohydrocarbons C(5)R'(4)(C(2)H(4)) with LiPR(2). C(5)Et(4)HSiMe(2)CH(2)PMe(2), was prepared from reaction of Li[C(5)Et(4)] with Me(2)SiCl(2) followed by Me(2)PCH(2)Li. The lithium salts were reacted with [RhCl(CO)(2)](2), [IrCl(CO)(3)] or [Co(2)(CO)(8)] to give [M(C(5)R'(4)(CH(2))(2)PR(2))(CO)] (M = Rh, R = Et, R' = H or Me, R = Ph, R' = Me; M = Ir or Co, R = Et, R' = Me), which have been fully characterised, in many cases crystallographically as monomers with coordination of the phosphorus atom and the cyclopentadienyl ring. The values of nu(CO) for these complexes are usually lower than those for the analogous complexes without the bridge between the cyclopentadienyl ring and the phosphine, the exception being [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (Cp' = C(5)Me(4)), the most electron rich of the complexes. [Rh(C(5)Et(4)SiMe(2)CH(2)PMe(2))(CO)] may be a dimer. [Co(2)(CO)(8)] reacts with C(5)H(5)(CH(2))(2)PEt(2) or C(5)Et(4)HSiMe(2)CH(2)PMe(2) (L) to give binuclear complexes of the form [Co(2)(CO)(6)L(2)] with almost linear PCoCoP skeletons. [Rh(Cp'(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are active for methanol carbonylation at 150 degrees C and 27 bar CO, with the rate using [Rh(Cp'(CH(2))(2)PPh(2))(CO)] (0.81 mol dm(-3) h(-1)) being higher than that for [RhI(2)(CO)(2)](-) (0.64 mol dm(-3) h(-1)). The most electron rich complex, [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (0.38 mol dm(-3) h(-1)) gave a comparable rate to [Cp*Rh(PEt(3))(CO)] (0.30 mol dm(-3) h(-1)), which was unstable towards oxidation of the phosphine. [Rh(Cp'(CH(2))(2)PEt(2))I(2)], which is inactive for methanol carbonylation, was isolated after the methanol carbonylation reaction using [Rh(Cp'(CH(2))(2)PEt(2))(CO)]. Neither of [M(Cp'(CH(2))(2)PEt(2))(CO)] (M = Co or Ir) was active for methanol carbonylation under these conditions, nor under many other conditions investigated, except that [Ir(Cp'(CH(2))(2)PEt(2))(CO)] showed some activity at higher temperature (190 degrees C), probably as a result of degradation to [IrI(2)(CO)(2)](-). [M(Cp'(CH(2))(2)PEt(2))(CO)] react with MeI to give [M(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] (M = Co or Rh) or [Ir(Cp'(CH(2))(2)PEt(2))Me(CO)]I. The rates of oxidative addition of MeI to [Rh(C(5)H(4)(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are 62 and 1770 times faster than to [Cp*Rh(CO)(2)]. Methyl migration is slower, however. High pressure NMR studies show that [Co(Cp'(CH(2))(2)PEt(2))(CO)] and [Cp*Rh(PEt(3))(CO)] are unstable towards phosphine oxidation and/or quaternisation under methanol carbonylation conditions, but that [Rh(Cp'(CH(2))(2)PEt(2))(CO)] does not exhibit phosphine degradation, eventually producing inactive [Rh(Cp'(CH(2))(2)PEt(2))I(2)] at least under conditions of poor gas mixing. The observation of [Rh(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] under methanol carbonylation conditions suggests that the rhodium centre has become so electron rich that reductive elimination of ethanoyl iodide has become rate determining for methanol carbonylation. In addition to the high electron density at rhodium.  相似文献   

11.
Mao LF  Mayr A 《Inorganic chemistry》1996,35(11):3183-3187
The complexes trans-[MI(2)(CNC(6)H(4)-CN-4)(2)], (M = Pd and Pt), trans-[FeI(2)L(4)] (L = CNC(6)H(4)-CN-4 and CNC(6)H(2)-Me(2)-2,6-CN-4), and [Mn(CNC(6)H(4)-CN-4)(6)][SO(3)CF(3)] were prepared. The compounds are thermally stable up to 230 degrees C or higher. The molecular structure of trans-[FeI(2)(CNC(6)H(4)-CN-4)(4)] was determined by X-ray crystallography: monoclinic, space group P2(1)/n, a = 11.570(2) ?, b = 10.1052(8) ?, c = 28.138(7) ?, beta = 92.034(9) degrees, Z = 4, 3464 unique reflections, R = 0.074, R(w) = 0.089. The complexes contain the peripheral cyano groups in linear, planar, and octahedral dispositions, respectively. Solids were obtained by combining solutions of [PdI(2)(CNC(6)H(4)-CN-4)(2)] and [Cu(hfacac)(2)], [FeI(2)(CNC(6)H(4)-CN-4)(4)] and AgSO(3)CF(3), [FeI(2)(CNC(6)H(2)-Me(2)-2,6-CN-4)(4)] and [Rh(2)(O(2)CCF(3))(4)], and [Mn(CNC(6)H(4)-CN-4)(6)][SO(3)CF(3)] and [Rh(2)(O(2)CCF(3))(4)]. [PdI(2)(CNC(6)H(4)-CN-4)(2)] and [Cu(hfacac)(2)] in a ratio of 1:2 form a crystalline, one-dimensional solid: monoclinic, space group P2(1)/c, a = 8.317(2) ?, b = 13.541(1) ?, c = 22.568(5) ?, beta = 100.45(1) degrees, Z = 2, 3279 unique reflections, R = 0.037, R(w) = 0.047.  相似文献   

12.
A new dirhodium(II,II) paddlewheel complex, [Rh(2)(O(2)CC(6)H(4)COOC(2)H(5))(4)] (1), has been synthesized using a predesigned functionalized carboxylate, namely, 4-(ethoxycarbonyl)benzoate. The target product has been crystallized from the acetone solution and structurally characterized as a bis-acetone adduct, [Rh(2)(O(2)CC(6)H(4)COOC(2)H(5))(4)(OCMe(2))(2)]·C(6)H(14) (2). By utilizing the ability of dangling ester groups to coordinate to open axial ends of neighboring dirhodium units, 1 can self-assemble to form 2D networks upon crystallization from solutions of noncoordinating solvents such as chlorobenzene and chloroform. The resulting [Rh(2)(O(2)CC(6)H(4)COOC(2)H(5))(4)]·2C(6)H(5)Cl (3) and [Rh(2)(O(2)CC(6)H(4)COOC(2)H(5))(4)]·2CHCl(3) (4) products have microporous solid state structures with the pores filled with the corresponding disordered solvent molecules. Notably, 3 and 4 represent unique examples of 2D extended frameworks based on dirhodium tetracarboxylate paddlewheel units devoid of any exogenous ligands. In solution, the dangling ends of carboxylate bridges of 1 have been successfully utilized for condensation reaction with the selected solid support, benzylamine-functionalized polystyrene, allowing successful heterogenization of dirhodium units through the equatorial covalent attachment to the substrate. The resulting solid product was tested as a catalyst in the cyclopropanation reaction of styrene with methyl phenyldiazoacetate to show good yields and diastereoselectivity.  相似文献   

13.
The recent discovery of the promising tumor cell kill by a novel platinum-acridine conjugate [Martins, E. T.; et al. J. Med. Chem. 2001, 44, 4492] has prompted us to explore the utility of analogous light-activatable rhodium(III) compounds as photocytotoxic agents. Here, the design and synthesis of [Rh(NH(3))(5)L](n)(+) complexes are described with L = 1,1,3,3-tetramethylthiourea (tmtu) or 1-[2-(acridin-9-ylamino)ethyl]-1,3,3-trimethylthiourea (2). The intercalator-based DNA-affinic carrier ligand 2 was synthesized from N-acridin-9-yl-N'-methylethane-1,2-diamine and dimethylthiocarbamoyl chloride and isolated as the hydrotriflate salt 2(CF(3)SO(3)). [Rh(NH(3))(5)(tmtu)](3+) (1) and [Rh(NH(3))(5)(2)](4+) (3) were obtained from the reactions of the trifluoromethanesulfonato complex [Rh(NH(3))(5)(OSO(2)CF(3))](CF(3)SO(3))(2) with the appropriate thiourea in noncoordinating solvents. All compounds were characterized by (1)H NMR and UV-vis spectroscopies and by elemental analyses. The single-crystal X-ray structures of 1(CF(3)SO(3))(3) x 2MeOH, 2(CF(3)SO(3)), and 3(CF(3)SO(3))(4) x H(2)O have been determined. Ligand-field photolysis of thermally inert 1 (lambda(max) = 378 nm) resulted in the aquation of 2 equiv of ammine ligand without noticeable release of sulfur-bound tmtu ((1)H NMR spectroscopy, NH(3)-sensitive electrode measurements). This was confirmed by (15)N[(1)H] NMR spectroscopy using (15)N-labeled [Rh((15)NH(3))(5)(tmtu)](3+) (1), which also indicated photoisomerization of the [RhN(5)S] moiety. Despite greatly accelerated ligand exchange, rhodium in 1 and 3 did not show light-enhanced formation of covalent adducts in calf thymus DNA. "Dark binding" levels of 3 in native DNA were slightly higher than for nontargeted 1, but significantly lower than those observed for analogous platinum-acridine. Agarose gel electrophoresis revealed photocleavage of supercoiled pUC19 plasmid DNA in the presence of hybrid 3 and its individual constituents 1 and 2. Simple 1 induced single-strand breaks while 3 produced complete degradation of the DNA after 24 h of continuous irradiation. Acridine 2 alone produced double-strand breaks. The extent of DNA damage observed for 1-3 correlates with the photocytotoxicity of the compounds in human leukemia cells, suggesting that DNA might be the cellular target of these agents.  相似文献   

14.
Tris(trifluoromethyl)borane carbonyl, (CF(3))(3)BCO, is obtained in high yield by the solvolysis of K[B(CF(3))(4)] in concentrated sulfuric acid. The in situ hydrolysis of a single bonded CF(3) group is found to be a simple, unprecedented route to a new borane carbonyl. The related, thermally unstable borane carbonyl, (C(6)F(5))(3)BCO, is synthesized for comparison purposes by the isolation of (C(6)F(5))(3)B in a matrix of solid CO at 16 K and subsequent evaporation of excess CO at 40 K. The colorless liquid and vapor of (CF(3))(3)BCO decomposes slowly at room temperature. In the gas phase t(1/2) is found to be 45 min. In the presence of a large excess of (13)CO, the carbonyl substituent at boron undergoes exchange, which follows a first-order rate law. Its temperature dependence yields an activation energy (E(A)) of 112 kJ mol(-)(1). Low-pressure flash thermolysis of (CF(3))(3)BCO with subsequent isolation of the products in low-temperature matrixes, indicates a lower thermal stability of the (CF(3))(3)B fragment, than is found for (CF(3))(3)BCO. Toward nucleophiles (CF(3))(3)BCO reacts in two different ways: Depending on the nucleophilicity of the reagent and the stability of the adducts formed, nucleophilic substitution of CO or nucleophilic addition to the C atom of the carbonyl group are observed. A number of examples for both reaction types are presented in an overview. The molecular structure of (CF(3))(3)BCO in the gas phase is obtained by a combined microwave-electron diffraction analysis and in the solid state by single-crystal X-ray diffraction. The molecule possesses C(3) symmetry, since the three CF(3) groups are rotated off the two possible positions required for C(3)(v)() symmetry. All bond parameters, determined in the gas phase or in the solid state, are within their standard deviations in fair agreement, except for internuclear distances most noticeably the B-CO bond lengths, which is 1.69(2) A in the solid state and 1.617(12) A in the gas phase. A corresponding shift of nu(CO) from 2267 cm(-)(1) in the solid state to 2251 cm(-)(1) in the gas phase is noted in the vibrational spectra. The structural and vibrational study is supported by DFT calculations, which provide, in addition to the equilibrium structure, confirmation of experimental vibrational wavenumbers, IR-band intensities, atomic charge distribution, the dipole moment, the B-CO bond energy, and energies for the elimination of CF(2) from (CF(3))(x)()BF(3)(-)(x)(), x = 1-3. In the vibrational analysis 21 of the expected 26 fundamentals are observed experimentally. The (11)B-, (13)C-, and (19)F-NMR data, as well as the structural parameters of (CF(3))(3)BCO, are compared with those of related compounds.  相似文献   

15.
Two new dirhodium(II) catalysts of general formula Rh(2)(N-O)(2)[(C(6)H(4))P(C(6)H(5))(2)](2) (N-O = C(4)H(4)NO(2)) are prepared, starting from Rh(2)(O(2)CCH(3))(2)(PC)(2)L(2) [PC = (C(6)H(4))P(C(6)H(5))(2) (head-to-tail arrangement); L = HO(2)CCH(3)]. The thermal reaction of Rh(2)(O(2)CCH(3))(2)(PC)(2).L(2) with the neutral succinimide stereoselectively gives one compound that according to the X-ray structure determination has the formula Rh(2)(C(4)H(4)NO(2))(2)[(C(6)H(4))P(C(6)H(5))(2)](2) (1). It corresponds to the polar isomer with two bridging imidate ligands in a head-to-head configuration. However, stepwise reaction of Rh(2)(O(2)CCH(3))(2)(PC)(2).L(2) with (CH(3))(3)SiCl and potassium succinimidate yields a mixture of 1 and one of the two possible isomers (structure B) with a head-to-tail configuration of the imidate ligands, Rh(2)(C(4)H(4)NO(2))(2)[(C(6)H(4))P(C(6)H(5))(2)](2) (2), also characterized by X-ray methods. In solution, compound 2 undergoes slow isomerization to 1; the rate of this process is enhanced by the presence of acetonitrile. Compounds 1 and 2 are obtained as pure enantiomers starting from (M)- and (P)-Rh(2)(O(2)CCH(3))(2)(PC)(2).L(2) rather than from the racemic mixture. Their enantioselectivities in cyclopropanation of 1-diazo-5-penten-2-one are similar to those reported for the dirhodium amidate catalysts.  相似文献   

16.
Several transition metal compounds are effective antitumor drugs whose biological activity can be attributed to their ability to bind deoxyribonucleic acid (DNA). In this study, DNA-binding experiments reveal that changing one bridging ligand on compounds with the general formula Rh(2)(μ-L)(HNOCCF(3))(3) alters the rate of DNA-binding by greater than 100-fold with μ-L = trifluoroacetate ? acetate > trifluoroacetamidate. These three dirhodium compounds are isolated as the major products of the reaction between Rh(2)(OOCCH(3))(4) and trifluoroacetamide in either refluxing chlorobenzene or molten trifluoroacetamide and have been characterized by NMR and LC/MS. By using (15)N-enriched trifluoroacetamide, NMR spectroscopy was used to assign the cis-(2,1) orientations of Rh(2)(μ-L)(HNOCCF(3))(3) compounds where μ-L = trifluoroacetate or acetate. This is the first report of Rh(2)(OOCCF(3))(HNOCCF(3))(3), a novel compound that may play a significant role in the biological and/or catalytic activity of compound mixtures commonly isolated as "Rh(2)(HNOCCF(3))(4)".  相似文献   

17.
Metal complexation studies were performed with AgSO(3)CF(3) and AgBF(4) and the ditopic pyrimidine-hydrazone ligand 6-(hydroxymethyl)pyridine-2-carboxaldehyde (2-methylpyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) in both CH(3)CN and CH(3)NO(2) in a variety of metal-to-ligand ratios. The resulting complexes were studied in solution by NMR spectroscopy and in the solid state by X-ray crystallography. Reacting either AgSO(3)CF(3) or AgBF(4) with 1 in either CH(3)CN or CH(3)NO(2) in a 1:1 metal-to-ligand ratio produced a double helicate in solution. This double helicate could be converted into a linear complex by increasing the metal-to-ligand ratio; however, the degree of conversion depended on the solvent and counteranion used. Attempts to crystallize the linear AgSO(3)CF(3) complex resulted in crystals with the dimeric structure [Ag(2)1(CH(3)CN)(2)](2)(SO(3)CF(3))(4) (2), while attempts to crystallize the AgSO(3)CF(3) double helicate from CH(3)CN resulted in crystals of another dimeric complex, [Ag(2)1(SO(3)CF(3))(CH(3)CN)(2)](2)(SO(3)CF(3))(2)·H(2)O (3). The AgSO(3)CF(3) double helicate was successfully crystallized from a mixture of CH(3)CN and CH(3)NO(2) and had the structure [Ag(2)1(2)](SO(3)CF(3))(2)·3CH(3)NO(2) (4). The linear AgBF(4) complex could not be isolated from the double helicate in solution; however, crystals grown from a solution containing both the AgBF(4) double helicate and linear complexes in CH(3)CN had the structure [Ag(2)1(CH(3)CN)(2)](BF(4))(2) (5). The AgBF(4) double helicate could only be crystallized from CH(3)NO(2) and had the structure [Ag(2)1(2)](BF(4))(2)·2CH(3)NO(2) (6).  相似文献   

18.
The first successful high-yield solution synthesis of homobimetallic Bi(2)(O(2)CCF(3))(4) (1), as well as heterobimetallic BiRh(O(2)CCF(3))(4) (2) and BiRh(O(2)CCF(2)CF(3))(4) (3), complexes is reported. It is based on one-pot reduction reactions starting from Bi(III) and Rh(II) carboxylates and using Bi metal as a reducing agent. The presence of small amounts of diphenyl ether was found to facilitate this reaction, most probably because of its good solubilizing and π-stabilizing abilities. The latter is illustrated by the isolation and structural characterization of a π-adduct of 1 with diphenyl ether, [Bi(2)(O(2)CCF(3))(4)·1/2Ph(2)O]. Importantly, the new approach expands to solution the chemistry of Bi(II) that was previously limited to the solid state only. The solution procedure developed for the preparation of heterometallic BiRh(O(2)CCF(3))(4) is now one step shorter and gives the product in excellent yield compared with the previously reported method based on sublimation-deposition technique. It is also performed on a greater scale (~10-20 times) and makes further scale-up feasible, if needed. Moreover, it eliminates the isolation of the hard-to-handle unsolvated Bi(II) trifluoroacetate used earlier as a starting material. A new polymorph of BiRh(O(2)CCF(3))(4) (2) was crystallized from solution in this work. The solution approach was also applied to the synthesis of a new heterobimetallic carboxylate with perfluorinated propionate ligands, BiRh(O(2)CCF(2)CF(3))(4) (3). All products are fully characterized by spectroscopic and single crystal X-ray diffraction methods. Complexes 2 and 3 exhibit similar solid state structures based on heterobimetallic paddlewheel units forming infinite 1D chains through intermolecular Rh···O interactions.  相似文献   

19.
The synthesis and characterization of a series of mononuclear d(8) complexes with at least two P-coordinated alkynylphosphine ligands and their reactivity toward cis-[Pt(C(6)F(5))(2)(THF)(2)] are reported. The cationic [Pt(C(6)F(5))(PPh(2)C triple-bond CPh)(3)](CF(3)SO(3)), 1, [M(COD)(PPh(2)C triple-bond CPh)(2)](ClO(4)) (M = Rh, 2, and Ir, 3), and neutral [Pt(o-C(6)H(4)E(2))(PPh(2)C triple-bond CPh)(2)] (E = O, 6, and S, 7) complexes have been prepared, and the crystal structures of 1, 2, and 7.CH(3)COCH(3) have been determined by X-ray crystallography. The course of the reactions of the mononuclear complexes 1-3, 6, and 7 with cis-[Pt(C(6)F(5))(2)(THF)(2)] is strongly influenced by the metal and the ligands. Thus, treatment of 1 with 1 equiv of cis-[Pt(C(6)F(5))(2)(THF)(2)] gives the double inserted cationic product [Pt(C(6)F(5))(S)mu-(C(Ph)=C(PPh(2))C(PPh(2))=C(Ph)(C(6)F(5)))Pt(C(6)F(5))(PPh(2)C triple-bond CPh)](CF(3)SO(3)) (S = THF, H(2)O), 8 (S = H(2)O, X-ray), which evolves in solution to the mononuclear complex [(C(6)F(5))(PPh(2)C triple-bond CPh)Pt(C(10)H(4)-1-C(6)F(5)-4-Ph-2,3-kappaPP'(PPh(2))(2))](CF(3) SO(3)), 9 (X-ray), containing a 1-pentafluorophenyl-2,3-bis(diphenylphosphine)-4-phenylnaphthalene ligand, formed by annulation of a phenyl group and loss of the Pt(C(6)F(5)) unit. However, analogous reactions using 2 or 3 as precursors afford mixtures of complexes, from which we have characterized by X-ray crystallography the alkynylphosphine oxide compound [(C(6)F(5))(2)Pt(mu-kappaO:eta(2)-PPh(2)(O)C triple-bond CPh)](2), 10, in the reaction with the iridium complex (3). Complexes 6 and 7, which contain additional potential bridging donor atoms (O, S), react with cis-[Pt(C(6)F(5))(2)(THF)(2)] in the appropriate molar ratio (1:1 or 1:2) to give homo- bi- or trinuclear [Pt(PPh(2)C triple-bond CPh)(mu-kappaE-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)Pt(C(6)F(5))(2)] (E = O, 11, and S, 12) and [(Pt(mu(3)-kappa(2)EE'-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)(2))(Pt(C(6)F(5))(2))(2)] (E = O, 13, and S, 14) complexes. The molecular structure of 14 has been confirmed by X-ray diffraction, and the cyclic voltammetric behavior of precursor complexes 6 and 7 and polymetallic derivatives 11-14 has been examined.  相似文献   

20.
The neutral and cationic dinuclear gold(I) compounds [(μ-N-N)(AuR)(2)] (N-N = 2,2'-azobispyridine (2-abpy), 4,4'-azobispyridine (4-abpy); R = C(6)F(5), C(6)F(4)OC(12)H(25)-p, C(6)F(4)OCH(2)C(6)H(4)OC(12)H(25)-p) and [(μ-N-N){Au(PR(3))}(2)](CF(3)SO(3))(2) (N-N = 2-abpy, 4-abpy, R = Ph, Me) have been obtained by displacement of a weakly coordinated ligand by an azobispyridine ligand. The corresponding silver(I) dinuclear [(μ-2-abpy){Ag(CF(3)SO(3))(PPh(3))}(2)] and polynuclear [{Ag(CF(3)SO(3))(4-abpy)}(n)] compounds have been obtained. The molecular structures of [(μ-2-abpy){Au(PPh(3))}(2)](CF(3)SO(3))(2) and [(μ-4-abpy){Au(PMe(3))}(2)](CF(3)SO(3))(2) have been confirmed by X-ray diffraction studies and feature linear gold(I) centers coordinated by pyridyl groups, and non-coordinated azo groups. In contrast the X-ray structure of [(2-abpy){Ag(CF(3)SO(3))(PPh(3))}(2)] shows tetracoordinated silver(I) centers involving chelating N-N coordination by pyridyl and azo nitrogen atoms. The gold(I) compounds with a long alkoxy chain do not behave as liquid crystals, and decompose before their melting point. The soluble gold(I) derivatives are photosensitive in solution and isomerize to the cis azo isomer under UV irradiation, returning photochemically or thermally to the most stable initial trans isomer. The silver(I) derivative [(2-abpy){Ag(CF(3)SO(3))(PPh(3))}(2)] also photoisomerizes in solution under UV irradiation, showing that its solid state structure, which would block isomerization by azo coordination, is easily broken. These processes have been monitored by UV-vis absorption and (1)H NMR spectroscopy. All these compounds are non-emissive in the solid state, even at 77 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号