首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
This work presents a new technique for automatically generating the 3D scanning surface for acoustic imaging using microphone arrays. Acoustic images, or maps, of sound coming from spatially distributed sources, may be generated from microphone array data using algorithms such as beamforming. Traditional 2D acoustic maps can contain errors in the near-field if the object being imaged has a 3D shape. It has been shown that using the 3D surface geometry of an object as a scanning surface for beamforming can provide more accurate results. The methods used previously to generate this 3D scanning surface have either required existing CAD (Computer-Aided Design) models of the object being acoustically imaged or have required separate equipment which is generally bulky and expensive. The new method uses one or more cameras in the array, a data projector, and structured light code to automatically generate the 3D scanning surface. This has the advantage that it is inexpensive, can be incorporated as an add-onto existing microphone arrays, has short scan time, and is capable of being extended to imaging dynamic scenes. This technique is tested using beamforming and CLEAN-SC (CLEAN based on spatial Source Coherence) algorithms for a spherical array and an Underbrink multi-arm spiral array. For sound sources located about 1.2 m from the array, the mean position errors obtained are 6 mm. This is a quarter of the diameter of the mini-speakers being used as a sound sources.  相似文献   

2.
The method of designing a freeform lens which can image on a formula describable non-planar surface with low distortion was proposed aimed on distortion correction. In this method, the Snell's law and the correspondence between the coordinates of object and the distortion free image are used to establish the partial differential equation which characterizes the freeform surface, and the partial differential equation can be solved to form the freeform surface. Take projection on spherical surface for example, a freeform lens is designed. After adding this lens to the ordinary projection lens at a certain position, the system (ordinary projection lens and freeform lens) can project an image on sphere with absolute distortion about 2 mm for an observer at half of the projection distance, and the MTF on sphere is analyzed in detail after.  相似文献   

3.
The digital ultrasonic speckle phase-shifting method (USPM), which is introduced in this paper, can be applied to the measurement of small displacement that is smaller than speckle size at the test point compared to traditional ultrasonic speckle correlation method (USCM). Using USPM, a digital ultrasonic reference signal is introduced to interfere with the ultrasonic speckle signal, which is picked up at the test point on an object surface and is referred to as the object signal. As the phase of the reference signal is shifted several times using the software and then they superimpose with the object signal respectively, the phase of the object signal can be calculated according to the intensities of the superimposed signals. If the object surface moves a small distance, the phase variation of the object speckle can be detected by the same process. As a result, the displacement of the object surface can be measured. Based on the feature of ultrasonic speckles, inner surface displacement of an object can be measured using this proposed method. In this case, the effect of outer surface roughness to the measurement accuracy of USPM is examined experimentally. The experimental results show that the measurement is successful when the displacement is smaller than half of the speckle size at the test point and the roughness parameter Ra of the outer surface of the specimen is less than about 5.47 μm.  相似文献   

4.
In this study the usefulness of micro-Computed Tomography (μ-CT) for the in-depth analysis of enamelled metal objects was tested. Usually investigations of enamelled metal artefacts are restricted to non-destructive surface analysis or analysis of cross sections after destructive sampling. Radiography, a commonly used technique in the field of cultural heritage studies, is limited to providing two-dimensional information about a three-dimensional object (Lang and Middleton, Radiography of Cultural Material, pp. 60–61, Elsevier-Butterworth-Heinemann, Amsterdam-Stoneham-London, 2005). Obtaining virtual slices and information about the internal structure of these objects was made possible by CT analysis. With this technique the underlying metal work was studied without removing the decorative enamel layer. Moreover visible defects such as cracks were measured in both width and depth and as of yet invisible defects and weaker areas are visualised. All these features are of great interest to restorers and conservators as they allow a view inside these objects without so much as touching them.  相似文献   

5.
This work proposes a new texturing technique of monocrystalline silicon surface for solar cells with sodium hypochlorite. A mixed solution consisting of 5 wt% sodium hypochlorite and 10 vl% ethanol has been found that results in a homogeneous pyramidal structure, and an optimal size of pyramids on the silicon surface. The textured silicon surface exhibits a lower average reflectivity (about 10.8%) in the main range of solar spectrum (400–1000 nm).  相似文献   

6.
The rigorous computation of the monostatic RCS (Radar Cross Section) of an object above a one-dimensional sea surface (2D case) needs to solve a problem involving a high number of unknowns. Thus, a recently developed fast numerical method, called E-PILE (Extended Propagation-Inside-Layer Expansion), was combined with FB-SA (Forward–Backward with Spectral Acceleration). Two objects are considered in this article: the cross and the cylinder. Results obtained from E-PILE + FB-SA allow us to understand the physical mechanisms involved in the coupling between the object and the sea surface.  相似文献   

7.
Electrochemical method for the synthesis of silver nanoparticles   总被引:1,自引:0,他引:1  
The article deals with a novel electrochemical method of preparing long-lived silver nanoparticles suspended in aqueous solution as well as silver powders. The method does not involve the use of any chemical stabilising agents. The morphology of the silver nanoparticles obtained was studied using transmission electron microscopy, scanning electron microscopy, atomic force microscopy and dynamic light scattering measurements. Silver nanoparticles suspended in water solution that were produced by the present technique are nearly spherical and their size distribution lies in the range of 2 to 20 nm, the average size being about 7 nm. Silver nanoparticles synthesised by the proposed method were sufficiently stable for more than 7 years even under ambient conditions. Silver crystal growth on the surface of the cathode in the electrochemical process used was shown to result in micron-sized structures consisting of agglomerated silver nanoparticles with the sizes below 40 nm.  相似文献   

8.
多光束数字全息的研究   总被引:2,自引:2,他引:0  
提出了一种多光束数字全息技术来解决当利用菲涅耳数字全息对全息图进行再现时,物体的多个表面无法同时再现得明亮、清晰.该方法是记录时采用多光束照明同一物体的多个表面,增强CCD上接收到的物体侧表面散射光的强度.实验成功地同时再现了物体的多个表面.同时,为了减弱再现像的散斑噪声,采用双线性插值和中值滤波处理图像,获得了质量高的三维物体的再现图像.  相似文献   

9.
This study extends the use of holographic interferometry to measure the nanoscale out-of-plane displacement with high surface resolution. It is noted that if the deformation is less than half of the optical wavelength, it is hard to find an obvious fringe pattern. Under such a situation, in general, the phase shift method is used. However, it needs to take more than 3 images for phase shifting and phase reconstruction In this paper, a more simple hybrid method of gray-level and holographic interferometry is used to extract fringe skeletons, in which it just needs to take one or two images for the normal deformation measurement directly, even if there exists no obvious fringe pattern. The displacement field with high surface resolution can also be obtained. The proposed method yielded a theoretical precision of 0.15 nm for out-of-plane displacement with a monochromatic CCD camera of 10-bit gray scale (1024 gray scales) sensitivity and microscale surface resolution for millimeter scale object with 640×480 pixels image resolution by an He–Ne LASER (632.8 nm wavelength) light source. The gray-level method is proposed to calculate the non-obvious interferometry fringe by traditional holographic interferometry hologram, and the result showed that this method works for this purpose.  相似文献   

10.
This paper presents a system for positioning markers and tracking the pose of a rigid object with 6 degrees of freedom in real-time using 3D digital image correlation, with two examples for medical imaging applications. Traditional DIC method was improved to meet the requirements of the real-time by simplifying the computations of integral pixel search. Experiments were carried out and the results indicated that the new method improved the computational efficiency by about 4–10 times in comparison with the traditional DIC method. The system was aimed for orthognathic surgery navigation in order to track the maxilla segment after LeFort I osteotomy. Experiments showed noise for the static point was at the level of 10−3 mm and the measurement accuracy was 0.009 mm. The system was demonstrated on skin surface shape evaluation of a hand for finger stretching exercises, which indicated a great potential on tracking muscle and skin movements.  相似文献   

11.
结构光三维物体面形实时测量系统   总被引:1,自引:0,他引:1  
余飞鸿 《光子学报》1994,23(6):521-529
本文基于结构光投影方法提出了一种新的三维物体面形重建方法,并建立了三维物体面形实时测量系统,系统用硬件电路实现结构光峰值提取,然后由软件对畸变光条峰值分布进行总体面形拟合处理。处理中,可以获得物体在视场内附加了一个倾斜面的三维物体面形分布。物体实际面形可以通过减去这个附加倾斜面而获得。  相似文献   

12.
When a Transversely Excited Atmospheric (TEA) CO2 laser (energy of 1.5 J, pulse duration of 200 ns) was focused on a metal sample surface containing hydrogen (H) in He gas at 1 atm, a strong helium gas plasma was produced and only H atoms came out of the sample. The H atoms then moved into the helium gas plasma to be excited through meta-stable helium atoms. Using this technique, an excellent linear calibration curve with zero intercept was made using zircalloy-2 samples containing H (100–600 ppm), where the compensation method was made using an emission intensity of O I 777.1 nm in order to subtract the H emission intensity coming from unwanted H2O. It should be emphasized that this technique has a possibility to realize highly sensitive analysis of H with a detection limit of less than 1 ppm because of its selective detection.  相似文献   

13.
By introducing normalized mode excitation coefficient and total mode excitation coefficient, we improve the 3-D mode propagation analysis (MPA) method for convenient design and analysis of multimode interference (MMI) coupler. With the improved 3-D MPA method and point-matching method, we present a novel formulation technique to analyze the low- and high-frequency characteristics for the impedance-matched polymer Mach-Zehnder interferometer electro-optic (EO) switch based on MMI couplers. As an application, under 1550 nm, optimization and simulation performed for the designed device reveal low driving voltage of 1.375 V with short EO region length of 5 mm. The insertion loss and extinction ratio are less than 3.75 dB and more than 42 dB, respectively. The microwave characteristic impedance is about 49.6 Ω, and due to the less mismatch between lightwave velocity and microwave velocity, the estimated cutoff switching frequency is up to 263 GHz with the 10–90% rise time and fall time about 1.90 ps under the operation of step-style square-wave switching signal. This theoretical cutoff switching frequency is almost 1.53 times of that of our previous reported shielded EO switch with similar design technique.  相似文献   

14.
A Fizeau interferometer based set up for measurement of surface forms of plane optical surfaces has been discussed. Phase shifting interferometry has been applied using polarization phase shifter. A linearly polarized (632.8 nm) He–Ne laser has been used as the source. Light reflected from the object and the reference/master surfaces are made circularly polarized in opposite senses by means of two properly oriented quarter wave retardation plates placed at appropriate positions, one inside and other outside the interference cavity of the interferometer, and phase shifts are introduced between the object and the reference/master waves by varying angular orientation of a polarizer/analyzer. Final result is made free from any residual wave-front aberrations introduced by the (intra-cavity) wave plate by subtracting phase values obtained by PSI technique between a high optical quality master surface and the reference surface from that obtained for the test object surface with respect to the same reference surface for each point of the interference field. Results are shown for a plane surface.Advantages of the technique presented are linearity and high accuracy in phase stepping, no perturbation of the interference cavity during the phase shifting and possibility of real time or dynamic interferometry.  相似文献   

15.
The multi-waveband temperature sensor (MWTS) array, in which each super-pixel (2 × 2 pixel cell) operates at four distinct thermal infrared (IR) wavebands is being developed. Using this high spatial resolution, four-band thermal IR band detector array, accurate temperature measurements on the surface of an object can be made without prior knowledge of its exact emissivity. This multi-band detector involves intersubband transition in III–V semiconductor-based quantum layered structures. Each detector stack absorbs photons within the specified wavelength band while allowing the transmission of photons in other spectral bands, thus efficiently permitting multi-band detection. This produces multiple, spectrally resolved images of the scene that are recorded simultaneously in a single snapshot on the FPA. From the multispectral images and calibration information about the system, computational algorithms are used to evaluate the temperature on the surface of a target.  相似文献   

16.
In this study, a method for the fabrication of microstructures on the surface and inside Foturan glass by femtosecond laser-induced modification was developed. This technique was followed by heat treatment to crystallize the modified area, and the specimen was then placed in an 8% HF acid solution for chemical etching. The fabricated microstructures were observed using scanning electron microscopy (SEM). The results demonstrated that the etching time is an important parameter in the fabrication of microstructures on Foturan glass. An example of a tapered U-shaped microchannel with a minimized neck diameter of about 5 μm at the central point for cell detection is presented.  相似文献   

17.
Fundamental differences between standard photography and micro-object imaging in a scanning electron microscope are analyzed. Basic ways of taking stereograms with a scanning electron microscope by the object rotation method and the observing technique are described. It is shown that stereo photography correctly estimates the spatial arrangement of features in objects with an intricate microrelief and makes it possible to very accurately calculate the depth of this relief (which sometimes exceeds the field of vision at large magnifications) in wide limits (from 0.5 to 100.0 μm). Using the developed surface of Li4Ti5O12 oxide and GaAs whiskers as examples, a stereographic computational method based on linear measurements of the same area on the object before and after rotation is demonstrated.  相似文献   

18.
Surface-roughness study using laser speckle method   总被引:2,自引:0,他引:2  
Current techniques for surface-roughness measurements can be classified into two broad categories: those using a measuring stylus which requires direct contact with the test object and those using non-contacting laser techniques. In this paper, a whole-field speckle method is employed to determine metallic-surface-roughness. The technique enables evaluation of the roughness of particular points on a surface. Six sets of surfaces prepared by a spark-erosion process with roughness ranging from 0·4–12·5 μm have been tested. Different correlation methods were used to process the test data and a practical method of evaluating surface-roughness is proposed.  相似文献   

19.
The surface of β-type Ti-Nb-Ta-Zr (TNTZ) alloy, which is a promising material for biomedical applications, was treated with the ultrasonic nanocrystal surface modification (UNSM) technique to enhance its hardness. As a result, a gradient nanostructured (GNS) layer was generated in the surface; the microstructure of the top surface layer consisted of nanoscale lamellae with a width of about 60–200 nm. In addition, there were lamellar grains consisting of nanostructured subgrains having unclear and wavy boundaries. The treated surface exhibited a hardness value of ∼385 HV compared to 190 HV for the untreated alloy. It was further determined that highly dense deformation twins were generated at a depth of ∼40–150 µm below the UNSM-treated surface. These deformation twins led to a significant work hardening effect which aided in enhancing the mechanical properties. It was also found that UNSM treatment resulted in the formation of micropatterns on the surface, which would be beneficial for high bioactivity and bone regeneration performance of TNTZ implants.  相似文献   

20.
A novel micro-plastic microfabrication technique for embossing is presented, which uses laser-driven flyer as the loading method in forming. Experiments were performed by allowing the laser-driven flyer to impact the thin film, which is placed above a micromold. Micro-channel with dimension of 160 μm×45 μm was successfully fabricated on copper foil surface using laser-driven flyer. The effects of laser energy on deformation mechanism were investigated experimentally. Surface roughness changes on formed sample were discussed. The novel technique holds promise for achieving precise, well-controlled, low-cost, high efficiency of three-dimensional metallic microstructures. In addition, this technique can cold form high strength or difficult materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号