首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The interaction of Ni(II) bis-tetrafluoroborate complexes [Ni(Dppe)2](BF4)2 and [Ni(CH3CN)6](BF4)2 (where Dppe = 1,2-bis(diphenylphosphino)ethane)) with Ni(0) phosphine complexes Ni(Dppe)2 and Ni(PPh3)4 in 1 : 1 mixture of toluene-acetonitrile was studied by the EPR method. The counter-disproportionation was shown to occur in a solution between the cationic Ni(II) complexes and the Ni(0) complexes to give Ni(I) complexes almost in quantitative amounts. The structures of the cationic Ni(I) complexes obtained were found to depend on both the solvent nature and the presence of a free phosphine in a solution.  相似文献   

2.
The compound [Ni(PPh(3))(3)][BF(4)] x BF(3) x OEt(2) was isolated in crystalline form from the olefin oligomerization catalyst system Ni(PPh(3))(4)/BF(3) x OEt(2) and structurally characterized by X-ray diffraction. The influence of vibronic coupling on the EPR parameters of three-coordinate metal complexes with a 3d(9) electronic configuration was investigated within the framework of ligand field theory. Analytical expressions for g-tensor components and isotropic hyperfine coupling constants with ligand nuclei were obtained using first-order perturbation theory. It has been shown that the account of the vibronic interaction in the excited state predicts the existence of three-axial anisotropy of the g-tensor even at the level of first-order perturbation theory; two axes of the g-tensor located in a plane of three-coordinate structure can rotate about the main z axis when a compound is distorted by motion of ligands. It has been shown that in three points of the potential energy surface minimum, for which linear and quadric constants of the vibronic interactions have an identical signs, the HFS isotropic constant from one ligand is larger than HFS constants from the other two; for different vibronic constant signs the ratio between HFS constants varies on opposite. This theoretical researches are in the quality consent with experimental data for a three-coordinate Ni(I) and Cu(II) flat complexes.  相似文献   

3.
Stable [C5H5Ni(NN)]BF4 complexes are formed by treatment of [C5H5Ni(SR2)2]BF4 (R = CH3) with some 1,2-diaminoalkylidenes NN; Chemical and spectroscopic properties are reported.  相似文献   

4.
The 1,5-bis(3,5-dimethyl-1-pyrazolyl)-3-thiapentane ligand (bdtp) reacts with [Rh(COD)(THF)2][BF4] to give [Rh(COD)(bdtp)][BF4] ([1][BF4]), which is fluxional in solution on the NMR time scale. Its further treatment with carbon monoxide leads to a displacement of the 1,5-cyclooctadiene ligand, generating a mixture of two complexes, namely, [Rh(CO)2(bdtp)][BF4] ([2][BF4]) and [Rh(CO)(bdtp3N,N,S)][BF4] ([3][BF4]). In solution, [2][BF4] exists as a mixture of two isomers, [Rh(CO)2(bdtp2N,N)]+ ([2a]+) and [Rh(CO)2(bdtp3N,N,S)]+ ([2b]+; major isomer) rapidly interconverting on the NMR time scale. At room temperature, [2][BF4] easily loses one molecule of carbon monoxide to give [3][BF4]. The latter is prone to react with carbon monoxide to partially regenerate [2][BF4]. The ligands 1,2-bis[3-(3,5-dimethyl-1-pyrazolyl)-2-thiapropyl]benzene (bddf) and 1,8-bis(3,5-dimethyl-1-pyrazolyl)-3,6-dithiaoctane (bddo) are seen to react with two equivalents of [Rh(COD)(THF)2][BF4] to give the dinuclear complexes [Rh2(bddf)(COD)2][BF4]2 ([4][BF4]2) and [Rh2(bddo)(COD)2][BF4]2 ([5][BF4]2), respectively. In such complexes, the ligand acts as a double pincer holding two rhodium atoms through a chelation involving S and N donor atoms. Bubbling carbon monoxide into a solution of [4][BF4]2 results in loss of the COD ligand and carbonylation to give [Rh2(bddf)(CO)4][BF4]2 ([6][BF4]2). The single-crystal X-ray structures of [3][CF3SO3], [5][BF4]2 and [6][BF4]2 are reported.  相似文献   

5.
The use of ferricenium cations [(C5H5)2FE]X (X = BF4, PF6, SbF6) as one-electron oxidizing agents for organometallic complexes is demonstrated. Sandwich compounds M(C5H5)2 (M = Cr, Co, Ni) and Cr(C6H6)2 are oxidized in nearly quantitative yield to the corresponding cations [M(C5H5)2]BF4 and [(C6H6)2Cr]BF4. The metalmetal bond in the dinuclear organometallic complexes [DienylM(CO)n]2 (M = Mo (n = 3), Fe (n = 2), Ni (n = 1)) and Co2(CO)8 is fissioned by (C5H5)2Fe+ in the presence of neutral ligands L to form the corresponding cationic compounds [DienylM(CO)nLm]X (M = Mo (n = 2), Fe (n = 2), Ni (n = 0)) and [Co(CO)3L2BF4 (L = VB and VIB donor ligands) in high yields.The practical applications of ferricenium cations are discussed in comparison with other methods for the preparation of cationic organometallic complexes.  相似文献   

6.
The interaction of the [Ni(PPh3)3]BF4 complex with styrene and the products of styrene conversion in the polymerization reaction were studied by EPR and 13C NMR spectroscopy. The structure of the σ-carbocationic complex of Ni(I) formed by the interaction of styrene with the [Ni(PPh3)3]BF4 cationic phosphine complex of Ni(I) was characterized in detail. It was found that the reaction of styrene polymerization occurred with the participation of the coordination center of the σ-carbocationic complex (coordination catalysis), whereas the reaction of telomerization occurred with the participation of the cationic center of this complex (ionic catalysis). The resulting polymer contained active terminal double bonds; it is a promising macromonomer for the synthesis of grafted copolymers. The discovered capacity of alcohols to undergo nucleophilic addition to a growing polymer chain offers strong possibilities for preparing functional polymers and block copolymers.  相似文献   

7.
8.
Oxidative addition of N-alkyl-2-halopyrimidinium cations to [Pd(PPh3)4] gives straightforward access to the cationic complexes [(PPh3)2(NHC)PdX]BF4 (3a,b) with pyrimidine-derived NHC-ligands. The new complexes were fully characterized including X-ray crystallography.  相似文献   

9.
Summary 2-Acetylpyridine N(4)-dihexyl- and N(4)-dicyclohexylthiosemicarbazone, HAc4DHex and HAc4DCHex, respectively, and FeIII, CoII, CoIII, NiII, CuII and ZnII complexes have been prepared and characterized by molar conductivities, magnetic susceptibilities and spectroscopic techniques. For many of the complexes, loss of the N(2)H hydrogen occurs, and the ligands coordinate to the metal centres as NNS monoanionic, tridentate ligands, e.g., [M(NNS)X] (M = CoII, NiII, CuII, NNS = Ac4DHex or Ac4DCHex and X = Cl or Br), [Fe(NNS)2]ClO4, [Co(NNS)2]BF4, [Cu(NNS)NO3] and [Zn(NNS)OAc]. ZnII ion is also chelated by neutral ligands in [Zn(HNNS)X2] (X = Cl, Br). In addition, [Ni(Ac4DHex)-(HAc4DHex)]X (X = BF4, ClO4) and [Ni(HAc4DCHex)2]-(BF4)2 are reported where the neutral thiosemicarbazone is coordinated via the pyridyl nitrogen, azomethine nitrogen and thione sulfur. Crystal structure determinations of HAc4DCHex and [Cu(Ac4DHex)Br] show the former to contain the bifurcated hydrogen bonded form and the latter to be planar with no significant interaction between neighbouring centres.  相似文献   

10.
Summary Trans-[RhCl(CO)L2] (L = PPh3, AsPh3 or PCy3) react with AgBF4 in CH2Cl2 to give the novel species [Rh-(CO)L2]+ [BF4].nCH2Cl2 (n = 1/2 or 1 1/2) (1–3), which we believe to be stabilised by weak solvent interaction. The corresponding stibine compound cannot be isolated by the same process, instead [Rh(CO)2(SbPh3)3]+ [BF4] (7) is formed when the reaction is carried out in the presence of CO. When reactions designed to prepare [Rh(CO)L2]+ [BF4] are performed in the presence of CO, or [Rh(CO)L2]+ [BF4] complexes are reacted with CO, [Rh(CO)2L2]+ [BF4] (L = PPh3, AsPh3 or PCy3) (4–6) are formed. If Me2CO is used as solvent in the preparation of [Rh(CO)L2]+ [BF4] (L = PPh3 or AsPh3), then the products are the four-coordinate [Rh(CO)L2-(Me2CO)]+ [BF4] (8,9) species. The complexes have been characterised by i.r., 31P and 1H n.m.r. spectroscopy and elemental analyses.  相似文献   

11.
A series of neutral mixed-ligand [HB(pz)3]Ag(PR3) silver(I) complexes (PR3 = tertiary phosphine, [HB(pz)3] = tris(pyrazolyl)borate anion), and the corresponding homoleptic [Ag(PR3)4]BF4 compounds have been synthesized and fully characterized. Silver compounds were screened for their antiproliferative activities against a wide panel of human cancer cells derived from solid tumors and endowed with different platinum drug sensitivity. Mixed-ligand complexes were generally more effective than the corresponding homoleptic derivatives, but the most active compounds were [HB(pz)3]Ag(PPh3) (5) and [Ag(PPh3)4]BF4 (10), both comprising the lipophilic PPh3 phosphine ligand. Detailed mechanistic studies revealed that both homoleptic and heteroleptic silver complexes strongly and selectively inhibit the selenoenzyme thioredoxin reductase both as isolated enzyme and in human ovarian cancer cells (half inhibition concentration values in the nanomolar range) causing the disruption of cellular thiol-redox homeostasis, and leading to apoptotic cell death. Moreover, for heteroleptic Ag(I) derivatives, an additional ability to damage nuclear DNA has been detected. These results confirm the importance of the type of silver ion coordinating ligands in affecting the biological behavior of the overall corresponding silver complexes, besides in terms of hydrophilic–lipophilic balance, also in terms of biological mechanism of action, such as interaction with DNA and/or thioredoxin reductase.  相似文献   

12.
Summary Cobalt(III) complexes of 2-acetylpyridine 3-pyrrolidinyl-,3-piperidinyl-, 3-hexamethyleneiminyl- and 3-azabicyclo-[3.2.2]nonylthiosemicarbazone, [Co(Lpo)2]BF4, [Co-(Lpip)2]BF4, [Co(Lhexim)2]BF4 and [Co(Lbcn)2]BF4, respectively; 2-formylpyridine 3-piperidinyl-, 3-hexa-methyleneiminyl- and 3-azabicyclo[3.2.2]nonylthiosemi-carbazone, [Co(pip)2]BF4, [Co(hexim)2]BF4 and [Co(bcn)2]BF4, respectively; and aceylpyrazine 3-aza-bicyclo[3.2.2]nonylthiosemicarbazone, [Co(Pzbcn)2]BF4, have been synthesized and their spectral properties measured. The1H and13C-n.m.r. spectra show the uncomplexed thiosemicarbazones to be mixtures of as many as three isomers, and that the two ligands in the cobalt(III) complexes are nearly identical. The crystal structure of [Co(Pzbcn)2]BF4 shows the two ligands coordinated in a mer-configuration. Bond lengths and angles in this complex are compared with data previously reported for thiosemicarbazone complexes.  相似文献   

13.
Halide abstraction from [Pd(μ-Cl)(Fmes)(NCMe)]2 (Fmes = 2,4,6-tris(trifluoromethyl)phenyl or nonafluoromesityl) with TlBF4 in CH2Cl2/MeCN gives [Pd(Fmes)(NCMe)3]BF4, which reacts with monodentate ligands to give the monosubstituted products trans-[Pd(Fmes)L(NCMe)2]BF4 (L = PPh3, P(o-Tol)3, 3,5-lut, 2,4-lut, 2,6-lut; lut = dimethylpyridine), the disubstituted products trans-[Pd(Fmes)(NCMe)(PPh3)2]BF4, cis-[Pd(Fmes)(3,5-lut)2(NCMe)]BF4, or the trisubstituted products [Pd(Fmes)L3]BF4 (L = CNtBu, PHPh2, 3,5-lut, 2,4-lut). Similar reactions using bidentate chelating ligands give [Pd(Fmes)(L-L)(NCMe)]BF4 (L-L = bipy, tmeda, dppe, OPPhPy2-N,N′, (OH)(CH3)CPy2-N,N′). The complexes trans-[Pd(Fmes)L2(NCMe)]BF4 (L = PPh3, tht) (tht = tetrahydrothiophene) and [Pd(Fmes)(L-L)(NCMe)]BF4 (L-L = bipy, tmeda) were obtained by halide extraction with TlBF4 in CH2Cl2/MeCN from the corresponding neutral halogeno complexes trans-[Pd(Fmes)ClL2] or [Pd(Fmes)Cl(L-L)]. The aqua complex trans-[Pd(Fmes)(OH2)(tht)2]BF4 was isolated from the corresponding acetonitrile complex. Overall, the experimental results on these substitution reactions involving bulky ligands suggest that thermodynamic and kinetic steric effects can prevail affording products or intermediates different from those expected on purely electronic considerations. Thus,water, whether added on purpose or adventitious in the solvent, frequently replaces in part other better donor ligands, suggesting that the smaller congestion with water compensates for the smaller M-OH2 bond energy.  相似文献   

14.
Bulky phosphanes PR3 (R = C6H11, iC3H7, t-C4H9, C6H4CH3-o) stabilize complexes of type [C5H5Ni(PR3)L]BF4 (L=S(CH3)2, (CH3)3PS), from which [C5H5Ni(PR3)2]+ cations are obtained. Iodide replaces the sulfur ligands to yield neutral C5H5Ni(PR3)I compounds. No stable [C5H5Ni(PR3)]+ cations could be obtained by iodide abstraction, but [C5H5Ni(PR3)CO]+ cations were formed in the presence of carbon monoxide.  相似文献   

15.
Electrospray ionization was employed to study the mass spectrometric behavior of the maleonitrile tetrathiacrown ethers mn12S4 (1) and mn13S4 (2) and maleonitrile pentathiacrown ether mn15S5 (3) and of their complexes with various metal salts (MX2, M = Pd, Pt, Ni, Co, Fe; X = Cl, CrCl3, Ni(BF4)2, TlPF6 or Cd(NO3)2) and Cu(SO3CF3)2. Both singly charged, [MXL]+ and [MXL2]+, and doubly charged complexes, [MLn]2+ (n = 2–5), were observed. The formation of the different complexes consisting of the transition metal ion, the counterion and the various crown ethers and their subsequent dissociation was also studied by collision‐induced dissociation measurements which were also used to evaluate the relative stabilities of the complexes. It was found that the collisional voltages for the dissociation of the complexes were generally greater in the [MXL]+ complexes than in the corresponding [MXL2]+ complexes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Cyclic voltammetry and controlled potential coulometry studies of 2,2′-bipyridyl, 4,4′-dimethyl-2,2′-bipyridyl and 2,2′, 2″-terpyridyl complexes of Fe(II), Co(II) and Ni(II) in acetonitrile are described. E1/2 values for M(III)/M(II) and M(II)/M)I) couples are compared and crystal field effects discussed. A series of M(I) and M(III) polypyridyl complexes have been prepared by controlled potential electrolysis; these include a number of 3+ and 1+ oxidation state complexes of nickel which have not previously been isolated — [Ni(bipy)3]-(ClO4)3, [Ni(dimbipy)3](ClO4)3, [Ni(terpy)2](ClO4)3 and [Ni(bipy)2]ClO4.  相似文献   

17.
Density functional theory is employed to study the interaction energies between dibenzothiophene (DBT) and 1-alkyl-3-methylimidazolium tetrafluoroborate ([C n mim]+[BF4]?). The structures of DBT, 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim]+[BF4]?), 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim]+[BF4]?), 1-hexyl-3-methylimidazolium tetrafluoroborate ([C6mim]+[BF4]?), 1-octyl-3-methylimidazolium tetrafluoroborate ([C8mim]+[BF4]?), [C2mim]+[BF4]?–DBT, [C4mim]+[BF4]?–DBT, [C6mim]+[BF4]?–DBT and [C8mim]+[BF4]?–DBT systems are optimized systematically at the B3LYP/6-31G(d,p) level, and the most stable geometries are obtained by NBO and AIM analyses. The results indicate that DBT and imidazolium rings of ionic liquids are parallel to each other. It is found that the [BF4]? anion prefers to be located close to a C1–H9 proton ring in the vicinity of the imidazolium ring and the most stable gas-phase structure of [C n mim]+[BF4]? has four hydrogen bonds between [C n mim]+ and [BF4]?. There are hydrogen bonding interactions, π–π and C–H–π interactions between [C8mim]+[BF4]? and DBT, which is confirmed by NBO and AIM analyses. The calculated interaction energies for the studied ionic liquids can be used to interpret a better extracting ability of [C8mim]+[BF4]? to remove DBT, due to stronger interactions between [C8mim]+[BF4]? and DBT, in agreement with the experimental results of dibenzothiophene extraction by [C n mim]+[BF4]?.  相似文献   

18.
The known compound 4′-(carboxyphenyl)-2,2′:6,2″-terpyridine (LH) was prepared and complexed with RuCl3.3H2O. The resulting complex [Ru(LH)Cl3] was then allowed to react separately with 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), triphenylphosphine (PPh3) and 1,2-bis-(diphenylphosphino)ethane (dppe). The compositions of corresponding complexes [Ru(LH)bpyCl](BF4) 1, [Ru(LH)phenCl](BF4) 2, [Ru(LH)(PPh3)(CH3CN)2] (BF4)23 and [Ru(LH)(dppe)Cl](BF4) 4 were assigned on the basis of their FAB-mass spectra, elemental analysis, spectroscopic (IR, NMR) data and X-ray diffraction measurements. The diamagnetic, cationic complexes displayed strong MLCT transitions in the visible region with significant shift in MLCT band energy corresponding to the strength of substituted ligands. The redox behaviour of the complexes was investigated using cyclic voltammetry measurements. Among all the complexes, 3 efficiently catalyzed the synthesis of propargylamine via three components coupling reaction.  相似文献   

19.
The reaction of IrH3(PPh3)2 with p-substituted aryldiazonium salts gives the compounds [IrH2(NHNC6H4R)(PPh3)2]+BF4- at low temperature (-10°C) and the o-metalated complexes [IrH(NHNC6H3R)(PPh3)2]+BF4- (R  F, OCH3) at 40–50°C. The reactions of the o-metalated complexes with CO, PPh3, NaI and HCl have been studied.  相似文献   

20.
The nickel(II) N‐benzyl‐N‐methyldithiocarbamato (BzMedtc) complexes [Ni(BzMedtc)(PPh3)Cl] ( 1 ), [Ni(BzMedtc)(PPh3)Br] ( 2 ), [Ni(BzMedtc)(PPh3)I] ( 3 ), and [Ni(BzMedtc)(PPh3)(NCS)] ( 4 ) were synthesized using the reaction of [Ni(BzMedtc)2] and [NiX2(PPh3)2] (X = Cl, Br, I and NCS). Subsequently, complex 1 was used for the preparation of [Ni(BzMedtc)(PPh3)2]ClO4 ( 5 ), [Ni(BzMedtc)(PPh3)2]BPh4 ( 6 ), and [Ni(BzMedtc)(PPh3)2]PF6 ( 7 ). The obtained complexes 1 – 7 were characterized by elemental analysis, thermal analysis and spectroscopic methods (IR, UV/Vis, 31P{1H} NMR). The results of the magnetochemical and molar conductivity measurements proved the complexes as diamagnetic non‐electrolytes ( 1 – 4 ) or 1:1 electrolytes ( 5 – 7 ). The molecular structures of 4 and 5· H2O were determined by a single‐crystal X‐ray analysis. In all cases, the NiII atom is tetracoordinated in a distorted square‐planar arrangement with the S2PX, and S2P2 donor set, respectively. The catalytic influence of selected complexes 1 , 3 , 5 , and 6 on graphite oxidation was studied. The results clearly indicated that the presence of the products of thermal degradation processes of the mentioned complexes has impact on the course of graphite oxidation. A decrease in the oxidation start temperatures by about 60–100 °C was observed in the cases of all the tested complexes in comparison with pure graphite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号