首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of thermal radiation and viscous dissipation on magneto-hydrodynamic (MHD) unsteady free-convection flow over a semi-infinite vertical porous plate are analysed. The fluid considered is non-gray (absorption coefficient dependent on wave length). The Network Simulation Method is used to solve the boundary-layer equations based on the finite-difference formulation; only discretization of the spatial co-ordinates is necessary, while time remains as a real continuous variable. This method provides a solution for both transient and steady-state problems at the same time, and programming does not require manipulation of the sophisticated mathematical software that is inherent in other numerical methods. The velocity, temperature, local skin-friction and local Nusselt number are studied for different parameters, including the radiation parameter, Eckert number, magnetic number and suction (or injection).  相似文献   

2.
3.
4.
The influence of thermal radiation and first-order chemical reaction on unsteady MHD convective flow, heat and mass transfer of a viscous incompressible electrically conducting fluid past a semi-infinite vertical flat plate in the presence of transverse magnetic field under oscillatory suction and heat source in slip-flow regime is studied. The dimensionless governing equations for this investigation are formulated and solved analytically using two-term harmonic and non-harmonic functions. Comparisons with previously published work on special cases of the problem are performed and results are found to be in excellent agreement. A parametric study illustrating the effects of various physical parameters on the fluid velocity, temperature and concentration fields as well as skin-friction coefficient, the Nusselt and Sherwood numbers in terms of amplitude and phase is conducted. The numerical results of this parametric study are presented graphically and in tabular form to highlight the physical aspects of the problem.  相似文献   

5.
This work is focused on the study of unsteady magnetohydrodynamics boundary-layer flow and heat transfer for a viscous laminar incompressible electrically conducting and rotating fluid due to a stretching surface embedded in a saturated porous medium with a temperature-dependent viscosity in the presence of a magnetic field and thermal radiation effects. The fluid viscosity is assumed to vary as an inverse linear function of temperature. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. With appropriate transformations, the unsteady MHD boundary layer equations are reduced to local nonsimilarity equations. Numerical solutions of these equations are obtained by using the Runge–Kutta integration scheme as well as the local nonsimilarity method with second order truncation. Comparisons with previously published work have been conducted and the results are found to be in excellent agreement. A parametric study of the physical parameters is conducted and a representative set of numerical results for the velocity in primary and secondary flows as well as the local skin-friction coefficients and the local Nusselt number are illustrated graphically to show interesting features of Darcy number, viscosity-variation, magnetic field, rotation of the fluid, and conduction radiation parameters.  相似文献   

6.
The laminar convective heat and mass transfer flow of an incompressible, viscous, electrically conducting fluid over an impulsively started vertical plate with conduction-radiation embedded in a porous medium in presence of transverse magnetic eld has been studied. An exact solution is derived by solving the dimensionless governing coupled partial differential equations. As the equations are nonlinear, so Laplace transform technique is used to solve it. The eects of important physical parameters on the velocity, temperature, concentration, skin friction, Nusselt number and Sherwood number have been analyzed through graphs. The results of the present study agree well with the previous solutions obtained without mass transfer. After the consideration of mass transfer, some dierent results are noticed. Applications of the present study arise in material processing systems and different industries.  相似文献   

7.
The problem of steady laminar magnetohydrodynamic (MHD) mixed convection heat transfer about a vertical plate is studied numerically, taking into account the effects of Ohmic heating and viscous dissipation. A uniform magnetic field is applied perpendicular to the plate. The resulting governing equations are transformed into the non-similar boundary layer equations and solved using the Keller box method. Both the aiding-buoyancy mode and the opposing-buoyancy mode of the mixed convection are examined. The velocity and temperature profiles as well as the local skin friction and local heat transfer parameters are determined for different values of the governing parameters, mainly the magnetic parameter, the Richardson number, the Eckert number and the suction/injection parameter, fw. For some specific values of the governing parameters, the results agree very well with those available in the literature. Generally, it is determined that the local skin friction coefficient and the local heat transfer coefficient increase owing to suction of fluid, increasing the Richardson number, Ri (i.e. the mixed convection parameter) or decreasing the Eckert number. This trend reverses for blowing of fluid and decreasing the Richardson number or decreasing the Eckert number. It is disclosed that the value of Ri determines the effect of the magnetic parameter on the momentum and heat transfer.  相似文献   

8.
An analysis is performed for non-Darcy free convection flow of an electrically conducting fluid over an impermeable vertical plate embedded in a thermally stratified, fluid saturated porous medium for the case of power-law surface temperature. The present work examines the effects of non-Darcian flow phenomena, variable viscosity, Hartmann–Darcy number and thermal stratification on free convective transport and demonstrates the variation in heat transfer prediction based on three different flow models. The wall effect on porosity variation is approximated by an exponential function. The effects of thermal dispersion and variable stagnant thermal conductivity are taken into consideration in the energy equation. The resulting non-similar system of equations is solved using a finite difference method. Results are presented for velocity, temperature profiles and local Nusselt number for representative values of different controlling parameters.  相似文献   

9.
An analysis has been carried out to study heat transfer characteristics of an incompressible Newtonian electrically conducting and heat generating/absorbing fluid having temperature-dependent viscosity over a non-isothermal wedge in the presence of thermal radiation. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The wedge surface is assumed to be permeable so as to allow for possible wall suction or injection. The effects of viscous dissipation, Joule heating, stress work and thermal radiation are included in the model. The governing differential equations are derived and transformed using a non-similarity transformation. The transformed equations are solved numerically by applying a fifth-order Runge-Kutta-Fehlberg scheme with shooting technique. Favorable comparisons with previously published work on various special cases of the problem are obtained. Numerical results for the velocity and temperature profiles for a prescribed magnetic field parameter as well as the development of the local skin-friction coefficient and local Nusselt number with the magnetic field and radiation parameters are presented graphically and in tabulated form to elucidate the influence of the various physical parameters.  相似文献   

10.
This paper analyzes the flow and heat and mass transfer characteristics of the free convection on a vertical plate with variable wall temperature and concentration in a doubly stratified micropolar fluid. A uniform magnetic field is applied normal to the plate. The governing non-linear partial differential equations are transformed into a system of coupled non-linear ordinary differential equations using similarity transformations and then solved numerically using the Keller-box method. The numerical results are compared and found to be in good agreement with previously published results as special cases of the present investigation. The non-dimensional velocity, microrotation, temperature and concentration are presented graphically for various values of magnetic parameter, coupling number, thermal and solutal stratification parameters. In addition, the Nusselt number, the Sherwood number, the skin-friction coefficient, and the wall couple stress are shown in a tabular form.  相似文献   

11.
The group theoretic method is applied for solving problem of combined magneto-hydrodynamic heat and mass transfer of non-Darcy natural convection about an impermeable horizontal cylinder in a non-Newtonian power law fluid embedded in porous medium under coupled thermal and mass diffusion, inertia resistance, magnetic field, thermal radiation effects. The application of one-parameter groups reduces the number of independent variables by one and consequently, the system of governing partial differential equations with the boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions. The ordinary differential equations are solved numerically for the velocity using shooting method. The effects of magnetic parameter M, Ergun number Er, power law (viscosity) index n, buoyancy ratio N, radiation parameter Rd, Prandtl number Pr and Lewis number Le on the velocity, temperature fields within the boundary layer, heat and mass transfer are presented graphically and discussed.  相似文献   

12.
The fully developed electrically conducting micropolar fluid flow and heat transfer along a semi-infinite vertical porous moving plate is studied including the effect of viscous heating and in the presence of a magnetic field applied transversely to the direction of the flow. The Darcy-Brinkman-Forchheimer model which includes the effects of boundary and inertia forces is employed. The differential equations governing the problem have been transformed by a similarity transformation into a system of non-dimensional differential equations which are solved numerically by element free Galerkin method. Profiles for velocity, microrotation and temperature are presented for a wide range of plate velocity, viscosity ratio, Darcy number, Forchhimer number, magnetic field parameter, heat absorption parameter and the micropolar parameter. The skin friction and Nusselt numbers at the plates are also shown graphically. The present problem has significant applications in chemical engineering, materials processing, solar porous wafer absorber systems and metallurgy.  相似文献   

13.
The present study investigates the effects of heat and mass transfer on peristaltic transport in a porous space with compliant walls. The fluid is electrically conducting in the presence of a uniform magnetic field. Analytic solution is carried out under long-wavelength and low-Reynolds number approximations. The expressions for stream function, temperature, concentration and heat transfer coefficient are obtained. Numerical results are graphically discussed for various values of physical parameters of interest.  相似文献   

14.
The problem of the effect of dust particles on the thermal convection in micropolar ferromagnetic fluid saturating a porous medium subject to a transverse uniform magnetic field has been investigated theoretically. Linear stability analysis and normal mode analysis methods are used to find an exact solution for a flat micropolar ferromagnetic fluid layer contained between two free boundaries. In case of stationary convection, the effect of various parameters like medium permeability, dust particles, non-buoyancy magnetization, coupling parameter, spin-diffusion parameter and micropolar heat conduction parameter are analyzed. For sufficiently large values of magnetic parameter M1, the critical magnetic thermal Rayleigh number for the onset of instability is determined numerically and results are depicted graphically. It is also observed that the critical magnetic thermal Rayleigh number is reduced solely because the heat capacity of clean fluid is supplemented by that of the dust particles. The principle of exchange of stabilities is found to hold true for the micropolar ferromagnetic fluid saturating a porous medium heated from below in the absence of micropolar viscous effect, microinertia and dust particles.  相似文献   

15.
The linear transformation group approach is developed to simulate problem of hydromagnetic heat transfer by mixed convection along vertical plate in a liquid saturated porous medium in the presence of melting and thermal radiation effects for opposing external flow. The application of a one-parameter transformation group reduces the number of independent variables by one so that the governing partial differential equations with the boundary conditions reduce to an ordinary differential equations with appropriate corresponding conditions. The Runge-Kutta shooting method is used to solve the determining equations of the set of nonlinear ordinary differential equations. are presented in the form of the temperature and flow fields in the melting region within the boundary layer for different parameters entering into the analysis. Also the effects of the pertinent parameters on the rate of the heat transfer in terms of the local Nusselt number at the solid–liquid interface are also discussed.  相似文献   

16.
The effect of heat and mass transfer on free convective flow of a visco-elastic incompressible electrically conducting fluid past a vertical porous plate through a porous medium with time dependant oscillatory permeability and suction in the presence of a uniform transverse magnetic field, heat source and chemical reaction has been studied in this paper. The novelty of the present study is to analyze the effect of chemical reaction, time dependant fluctuative suction and permeability of the medium on a visco-elastic fluid flow. It is interesting to note that presence of sink contributes to oscillatory motion leading to flow instability. Further it is remarked that presence of heat source and low rate of thermal diffusion counteract each other in the presence of reacting species.  相似文献   

17.
The present note presents some errors in the aforementioned paper published in Mathematical Methods in the Applied Sciences. Two errors are found in the definition of the non‐dimensional parameters and correct results are presented for temperature profiles included in figure 10 of the previous paper. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The effect of radiation on MHD steady asymmetric flow of an electrically conducting fluid past a stretching porous sheet in the presence of radiation has been analyzed. Exact solutions for the velocity and temperature fields have been derived and the effects of radiation, magnetic, Prandtl number, wall temperature and suction (or injection) parameters have been studied with the help of graphs.  相似文献   

19.
A study of cross-diffusion effects on convection from a vertically spinning cone under the influence of an external magnetic field is considered. The non-linear two-point boundary value problem governing the flow is solved numerically. Two different types of surface heating, namely linear surface temperature (LST) and linear surface heat flux (LSHF) are considered. A parametric study addressing the effects of various flow parameters on the fluid properties, the skin friction, heat and mass transfer coefficients is given.  相似文献   

20.
An analytical study is performed on heat and mass transfer in MHD‐free convection from a moving permeable vertical surface and the results are compared with previous works on this phenomenon to test the validity. The coupled equations of boundary layer are transformed from their non‐linear form to ordinary form using similarity transformation and then are solved by a newly developed method, homotopy analysis method. Having different base functions, homotopy analysis method provides us with great freedom in choosing the solution of a nonlinear problem. Solving the boundry layer equations, the effects of different parameters such as magnetic field strength parameter (M), Prandtl number (Pr), Schmidt number (Sc), buoyancy ratio and suction/blowing parameter (fw) on velocity, temperature, and concentration profiles are taken into consideration. Obtained results show that increment of magnetic field strength parameter (M) leads to decrease in velocity profile. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号