首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
紫外吸收方法中,硝酸盐氮(NO-3-N)的紫外吸收峰在202.0 nm左右,而亚硝酸盐氮(NO-2-N)的紫外吸收峰在210.0 nm左右,两者吸收峰位置距离很近,因此,在分析过程中两者的紫外吸收曲线严重重叠,相互之间严重干扰,不经过分离很难用单波长对二者的含量进行测定而常用的国标方法过程又过于繁琐,耗时较长。为了准确、快速、环保的实现环境水体和饮用水中的硝酸盐氮和亚硝酸盐氮快速监测,避免国标方法中对二者测定的诸多不足,结合紫外吸收和二阶导数光谱法,在不经过任何预先分离处理的情况下,建立了水体中这两种物质的快速分析方法,实现水样中二者的快速准确测定。研究采用优级纯试剂配制硝酸盐氮和亚硝酸盐氮系列标准溶液。以去离子水做参比,采用紫外-可见光分光光度计扫描其在195~250 nm范围内的紫外吸收光谱,之后采用Origin软件对所获得的光谱图做二阶导数处理,并采用Origin软件中的Savitzky-Golay方法对处理后的二阶导数光谱进行平滑处理以去除其他无关的干扰和噪声。通过观察上述所得两组二阶导数光谱图,得出以下结论,不同浓度的亚硝酸盐氮样品在223.5 nm处吸光度的二阶导数均为0,不同浓度的硝酸盐氮样品在216.5 nm处的吸光度的二阶导数也均为0。通过实验可见硝酸盐氮和亚硝酸盐氮混合样品的紫外吸收光谱的二阶导数在这两个特定波长处符合朗伯比尔定律。实验通过配制硝酸盐氮和亚硝酸盐氮混合样品,并扫描混合样品的紫外吸收光谱,采用上述方法对所得光谱做二阶导数及平滑去噪处理。研究混合样品二阶导数光谱图可以看出在硝酸盐氮浓度相同而亚硝酸盐氮浓度不同时,亚硝酸盐氮的浓度变化会对硝酸盐氮的吸光度的二阶导数有影响,但是各种混合样品的二阶导数光谱在223.5 nm处几乎交叉于一点,说明此处亚硝酸盐氮的浓度不同不会对硝酸盐氮的二阶导数吸光度有影响。且在223.5 nm处硝酸盐氮二阶导数吸光度随浓度增加而线性增加。因此,223.5 nm可作为混合组分中硝酸盐氮的测定波长。参照以上方法,可得亚硝酸盐氮的测定波长为216.5 nm。在223.5 nm处对单组分的硝酸盐氮的浓度值及其相应的吸光度的二阶导数进行线性回归,其线性关系良好,得到标准曲线的回归方程为C=438.69A+0.015,R2=0.995 9。同理,得到亚硝酸盐氮在216.5 nm处回归方程为C=-657.29A+0.068 8,R2=0.998。为了验证这种方法在实际水样测量中能否成立,取秦皇岛市新河、汤河以及戴河三种河水水样进行实验验证,结果表明,回收率在96.7%~103.0%之间,相对标准偏差在1.46~3.68之间。该方法结果较准确,且操作更加简便,成本较低,可同时实现硝酸盐氮和亚硝酸盐氮快速在线监测。  相似文献   

2.
紫外分光光度法(UV法)由于较传统化学方法具有效率高操作简便、无二次污染且可现场原位测试等优点,近些年来被广泛应用到水质参数的测试中。硝酸盐氮是工业废水中的主要污染物之一。基于UV法测量水体中硝酸盐氮浓度的标准方法是分别测量水样在220nm和275nm处的吸光度,然后用275 nm处的吸光度对220 nm处的吸光度进行校正,进而绘制出校正后的吸光度与硝酸盐氮浓度的标准曲线。然而,当硝酸盐氮浓度升高时,标准法所采用的朗伯比尔定律的线性关系以及不同物质吸光度叠加的线性不能很好地满足,在实际的实验测试中也发现,很难建立硝酸盐氮在220 nm处的吸收模型。为了克服单波长或双波长方法的缺陷,将硝酸盐氮吸收峰范围的各个波长的吸光特性引入到模型的建立之中。同时,为了降低模型的复杂度,在建立模型之前先对吸光度数据进行主成分分析,将输入数据的维度数从107压缩到4,然后对压缩后的数据使用局部加权线性回归法建模,该吸收模型对于训练样本和测试样本都有较好的预测结果,且能够适应高浓度时吸光度与浓度的非线性关系,测量上限可达几百mg·L-1。另外,此方法的原理和流程也适用于其他水质参数吸收模型的建立。  相似文献   

3.
硝酸盐氮是水环境中监测中重要的污染指标之一,通过紫外吸收光谱可以快速无污染地对该污染物进行检测。针对紫外吸收光谱容易受到浊度干扰的这一情况,通过实验方法分析了福尔马肼浊度标准液对硝酸盐氮标准液的紫外吸收光谱的影响,基于此提出了补偿曲线法的浊度补偿方法对硝酸盐氮的紫外吸收光谱进行补偿校正,并通过实验对该方法进行了验证,验证结果良好。首先,在实验室通过紫外光谱采集测试系统采集了浓度为0.2~10 mg·L~(-1)的12组硝酸盐氮标准液、 5~50 NTU的10组福尔马肼浊度液、以及福尔马肼浊度液与硝酸盐氮的混合溶液的紫外吸收光谱。理论上,根据朗伯-比尔定律,混合溶液的吸光度应该等于不同溶质吸光度的叠加,但是通过实验分析,混合溶液在硝酸盐氮的主要吸收谱区的吸光度并不等于硝酸盐氮和浊度吸光度之和,这是因为浊度颗粒打破了硝酸盐氮分子的共面性,造成空间位阻,使共轭体系被破坏,导致硝酸盐氮吸光度降低。因此引入了在0~1之间的补偿系数k_N(λ)用来表征浊度对硝酸盐氮吸收谱的影响,当k_N(λ)越接近0时,表明浊度在此波长处对硝酸盐氮的吸光度影响越大。根据实验测量的光谱数据求出不同浊度在硝酸盐氮主要吸收谱区的补偿系数,即可得到不同浊度的补偿曲线。通过实验分析, 350~400 nm波段的硝酸盐氮吸光度基本为0,混合溶液吸光度只与浊度相关,且两者的吸光度基本相同,因此可以选择此波段的光谱积分来建立浊度回归模型,从而解算混合溶液的浊度值。相比于单个波长的建模回归,该光谱积分回归模型的稳定性好,不容易受到其他因素干扰。浊度解算模型的相关系数r的平方为0.998 5,解算效果较好,得到浊度值之后即可进行浊度补偿。通过实验对该补偿方法进行了验证,并与单波长的浊度补偿与未进行补偿时进行了对比。验证结果表明,补偿曲线法进行浊度补偿后,建立偏最小二乘(PLS)算法的硝酸盐氮预测模型,预测均方根误差(RMSEP)为0.124,预测值与真实值的平均绝对误差(MAE)为5.3%,补偿效果很好,其他两种都会发生很大偏差。相比之下,该文提出的浊度补偿方法效果明显优于其他两种,此方法可以为硝酸盐氮紫外吸收光谱的浊度补偿提供有效的技术参考。  相似文献   

4.
在未受有机物污染的体系中,采用吸光度校正法可以准确快捷的消除铁离子的干扰.铁离子在220nm和275nm处都有吸收,而且这两个吸光度之间具有A220,Fe3+=3.8A275,Fe3+的线性关系.利用硝酸根在275nm处没有吸收,将A220,Fe3+从水样在220nm的吸光度值中扣除后即得到水样中硝酸盐氮的浓度.  相似文献   

5.
紫外吸收光谱法研究硝酸盐溶液   总被引:3,自引:1,他引:2  
王睿  余震虹  鱼瑛 《光谱实验室》2009,26(2):206-209
分析硝酸盐溶液的紫外吸收光谱,对于人类健康、环境治理等问题具有重要意义。水中氮含量超过一定标准,会造成水体富营养化,引起水体污染,水质开始恶化,并伴有腥臭味,对人体健康非常不利。实验表明,硝酸盐溶液的紫外吸收光谱谱线在200—240nm内具有明显的吸收峰,浓度处于1—7mg/L之间,吸光度正比于溶液浓度。在200—240nm范围内确定了线性程度最好的波长点为220nm。经过一元线性回归建模,获得220nm处的回归直线关系式,它的相关系数为0.9974,回归系数的标准误差分别为0.022307和0.005152。整个结果为水中氮测定及其特性研究、光电检测提供了科学参考。  相似文献   

6.
土壤水分对近红外光谱实时检测土壤全氮的影响研究   总被引:4,自引:0,他引:4  
利用近红外光谱技术实时预测土壤全氮含量是精细农业的研究热点之一,但是由于土壤水分在近红外波段的吸收系数较高,影响了土壤全氮含量的实时预测精度。使用布鲁克MATRIX_I傅里叶近红外光谱分析仪对不同土壤水分的土壤样本进行了近红外光谱扫描,定性和定量的分析了土壤水分对近红外光谱的影响,并提出了一种消除土壤水分对土壤全氮含量预测影响的方法。近红外光谱扫描结果显示在同一全氮含量水平下,随着土壤水分含量的增加,光谱吸光度呈逐渐上升的趋势,且变化趋势为非线性。通过对1 450和1 940 nm两个水分吸收波段的差分处理,设计了水分吸收指数MAI(moisture absorbance index),再对土壤按照水分含量梯度进行分类,提出了相应的修正系数。修正后的6个土壤全氮特征波段处(940,1 050,1 100,1 200,1 300和1 550 nm)的土壤吸光度值作为建模自变量,使用BP神经网络建立了土壤全氮预测模型,模型的RC,RV,RMSEC,RMSEP和RPD分别达到了0.86,0.81,0.06,0.05和2.75;与原始吸光度所建模型相比较模型精度得到了显著提高。实验结果表明本方法可以有效地消除土壤水分对近红外光谱检测土壤全氮含量预测的影响,为土壤全氮含量实时预测提供了理论和技术支持。  相似文献   

7.
基于PCA和BP神经网络的硝酸盐氮浓度检测方法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对紫外分光光度法(UV法)检测混有干扰物质的硝酸盐氮溶液浓度精度不高的问题,提出一种基于主成分分析(principal component analysis,PCA)和BP神经网络的硝酸盐氮浓度检测方法。通过微型光谱仪物质成分检测系统测得硝酸盐氮试剂在196 nm~631 nm波段的吸光度数据,分为测试集和训练集。通过PCA计算训练集,得到主成分。根据BP算法搭建三层人工神经网络。将所得主成分除以8后输入网络展开训练。训练过程中采用留一法交叉验证。用该模型计算训练集和测试集,所得值与真实浓度的平均相对误差分别为2.411 5%和1.553%。实验结果表明,该方法能较好检测出混有干扰物质的硝酸盐氮溶液浓度。  相似文献   

8.
血液中碳氧血红蛋白饱和度的双波长分光光度简便测定法   总被引:6,自引:1,他引:6  
本文报道血液中碳氧血红蛋白基于吸光度差值的双波长分光光度检测方法,检血用含有Na2S2O4的溶液释得到HbCO和Hb的双组分溶液,Hb有相同吸光度的双波长处的吸光度差值只反映HbCO的浓度,HbCO有相同吸光度的双波长处的光度差值只反映Hb的浓度,测定了这此吸光度差值可以利用约定的公式计算出检血的HbCO%.进行比较实验,当检出是由HbCO和Hb溶液混合制备时,本方法测定值与理论值严格一致,当检血是中毒案件检血时,本方法测定值与可靠方法的测定值严格一致.  相似文献   

9.
为实现高效短程生物脱氮及氨氮和亚硝酸盐氮的快速检测,采用主成分分析结合BP神经网络的方法建立短程生物脱氮工艺中氨氮和亚硝酸盐氮的近红外光谱定量分析模型(BP神经网络模型)。工艺运行结果表明:原水经过好氧阶段氨氮从45.3 mg·L-1下降到2.7 mg·L-1,亚硝酸盐氮从0.01 mg·L-1上升到19.6 mg·L-1,硝酸盐氮受到抑制;在缺氧段亚硝酸盐氮从19.6 mg·L-1下降至1.2 mg·L-1,系统实现了良好的短程生物脱氮效果。水样原始光谱主成分分析表明:前13个主成分代表了原始光谱数据的信息,其累计贡献率达到95.04%,排除了冗余信息且大大降低了模型的维数,光谱数据矩阵从192×2 203减少到192×13,大大降低了运算量并提高了模型的精度。BP神经网络模型校正结果显示:BP神经网络模型对氨氮、亚硝酸盐氮校正时的决定系数(R2)分别达到0.950 4和0.976 2,校正均方根误差(RMSECV)分别为0.016 6和0.010 9。BP神经网络模型预测结果显示:BP神经网络模型对氨氮、亚硝酸盐氮预测输出与期望输出之间的决定系数(R2)分别为0.974 0和0.981 4,预测均方根误差(RMSEP)分别为0.033 7和0.028 7,模型预测效果良好。研究表明,BP神经网络模型可以通过快速测定水样的近红外光谱数据预测短程生物脱氮工艺中氨氮和亚硝酸盐氮浓度,并根据氨氮和亚硝酸盐氮浓度变化及时、灵活地控制工艺的运行,为生物脱氮提供快速有效的检测技术和科学依据。  相似文献   

10.
水培番茄施氮量近红外光谱预测模型的研究   总被引:5,自引:0,他引:5  
通过小波变换去除了可见光区(350~560 nm)的噪声,提取出了叶酸的特征波段366 nm和与叶绿素有关的特征波段380,414,437,554 nm.在560~2 500 nm的波长范围内,去除噪声后的最大误差低于1.47%;在特征峰谷处的最大误差不超过0.11%.用BP神经网络建立了番茄施氮量预测模型.研究表明,在用植物探头获取番茄叶片光谱数据并去噪的条件下,用554,673,1 440,1 940 nm处的吸光度值作为BP神经网络的输入变量建立的番茄施氮最的预测模型有很高的预测精度,有极大的潜力能够满足实际应用的需要.对研究大田有效养分的预测模型也有重要的参考价值.  相似文献   

11.
研究了流动注射在线消解测定水中总氮的自动分析方法。方法基于使用电热和紫外在碱性过硫酸钾体系中消解样品,有机形态和无机形态的氮都被氧化为硝酸盐氮,消解效率为93.0%—108.5%。硝酸盐通过镀铜的镉柱还原为亚硝酸盐,亚硝酸盐与4-对氨基苯磺酰胺、N-(1-萘基)乙二胺盐酸盐形成偶氮染料,在540nm处进行测定。方法的线性范围为20.0—2000.0μg.L-1(r≥0.9995),检出限为8.3μg.L-1,相对标准偏差为0.8%—1.6%;样品测定频率为35样/h,地表水、地下水、自来水等实际水样的加标回收率为95.9%—107.3%。对于污水样品中的总氮测定FIA与国标方法GB 11894-89对比,无显著差异。  相似文献   

12.
针对水质多参数监测仪器的低功耗、微型化、集成化和智能化,研制了一种基于顺序注射分析技术(SIA)和连续光谱检测方法融合的微型测定原位水质多参数检测仪,系统设计的核心在于消解池结构设计且消解池作为检测池,以及微控技术顺序注射平台的原理设计和多参数联合消解测定流程设计.对融合SIA和连续光谱水质多参数原位分析的新方法进行实...  相似文献   

13.
建立应用AA3连续流动分析仪测定天然泉水中亚硝酸盐氮的方法。在0-5.00mg·L^-1线性区间内该方法线性关系好,较高的精密度和准确度,检出限低。与GB/T8538-2008饮用天然矿泉水检验方法中亚硝酸盐氮分光光度法相比,该方法具有自动进样、分析速率快、试剂耗量低等优点,可应用于大批量天然泉水分析.  相似文献   

14.
中性红分光光度法测定肝素钠的研究   总被引:6,自引:1,他引:5  
在pH 3.0的Britton-Robinson(B-R)缓冲溶液中,中性红与肝素钠相互作用形成复合物而导致溶液吸收光谱发生变化,用分光光度法对光谱变化进行了研究。 中性红溶液在523 nm处有一个强的特征吸收峰,当在其溶液中加入肝素钠后,溶液发生褪色现象,吸收峰强度降低,且没有新的吸收峰出现,吸光度差值(ΔA)与肝素钠的浓度成正比。 对结合反应的条件进行了优化,在最佳条件下利用溶液吸光度值的降低与肝素钠浓度的关系建立了一种测定肝素钠浓度的新方法,测定的线性范围为0.10~15.0 mg·L-1,表观摩尔吸光系数ε=2.037×106 L·mol-1·cm-1,检测限(3σ)为0.073 mg·L-1。 将该方法应用于肝素钠注射液效价的测定,结果令人满意。 用摩尔比法对复合物的结合比进行了推算,两者形成1∶3的复合物。  相似文献   

15.
水体中的硝酸盐浓度过高不仅会造成水环境污染而且会对人类身体健康造成很大威胁,传统的检测硝酸盐的方法检测时间长且操作复杂。针对水体中硝酸盐氮难以快速在线检测的问题,基于紫外吸收光谱,提出了一种混合预测模型结合光谱积分快速定量检测水体中硝酸盐浓度的方法。混合预测模型为低浓度样本建立的双波长法预测模型与高浓度样本建立的偏最小二乘支持向量机(LS-SVM)预测模型数据融合之后的模型。按照合适的浓度梯度配备了19组硝酸盐氮标准溶液,通过实验测得不同浓度硝酸盐氮样本的光谱数据。首先基于双波长法对所有样本进行回归分析,按照A=A220-2A275计算不同实验样本的吸光度A,其中A220A275是220和275 nm处样本的吸光度,将吸光度A与样本浓度值进行线性回归,拟合出样本浓度的预测值。结果显示当样本浓度较小时,相关性很好,r为0.997 4,随着实验样本浓度的上升,曲线发生严重的非线性漂移,因此双波长法只适合低浓度样本预测模型的建立。对于高浓度样本,光谱重叠严重,适合建立非线性的预测模型,支持向量机(SVM)与LS-SVM都适合小样本的非线性数据建模,LS-SVM预测精度稍高,运算速度稍快。通过对所有的实验样本进行全波长光谱积分,比较相邻样本光谱积分的变化率可以筛选出样本的临界浓度值,4 mg·L-1的硝酸盐样本积分值前后变化率最大,因此选择4 mg·L-1作为临界浓度值较为合适。浓度高于4 mg·L-1的实验样本建立LS-SVM预测模型,通过交叉验证的方法选择出合适的参数,正则化参数γ=50,核函数选择高斯核,核函数宽度σ2=0.36,训练样本之后进行回归;其余样本建立双波长法预测模型,最后进行两种模型的数据融合,形成从低浓度到高浓度的水体中硝酸盐浓度的检测。为了验证混合预测模型的预测精度,另外建立了SVM,LS-SVM,偏最小二乘(PLS)等模型,并求出r,预测值与真实浓度值平均绝对误差(MAE)和均方根误差(RMSE)对模型进行评价。验证结果表明,相比于SVM,LS-SVM和PLS等模型,提出的混合模型回归的相关系数为0.999 86,分别提高了1.8%,1.6%和0.45%,预测值与真实浓度的平均绝对误差为2.55%,分别降低了6.27%,4.49%和1.01%,均方根误差为0.303,为四种预测模型中最小,SVM与LS-SVM的相对误差相对较高,PLS模型相对误差上下波动比较大,混合预测模型相对误差最为稳定,并保持在较低水平,由此可见混合预测模型的预测效果明显优于其他几种模型。并与文献[5-7]中的测量方法进行对比,该混合预测方法可以简单快速的测量水体中硝酸盐氮的浓度,且不需要试剂,无二次污染,与文献[9]中的预测模型相比,预测精度明显提高。因此提出的混合模型可正确快速地预测水体中硝酸盐氮的浓度,可为在线监测水体中硝酸盐浓度提供有效的技术参考。  相似文献   

16.
Abstract Nitrite is a very important intermediate in many microbiological N transformations in soils and water. The stable isotope (15)N is often used to investigate these processes. The determination of (15)N in low concentrations of nitrite in the presence of large concentrations of nitrate is very difficult. Methods used so far for the isotope analysis of nitrite are unsatisfactory, because the nitrite must be calculated as the difference between nitrate plus nitrite and nitrate alone. More useful are mehods by which the nitrite is selectively converted into a chemical form that is suitable for (15)N analysis and that is free from interference from other N species, particularly nitrate. Using this principle in the present study we developed a method where the nitrite is reduced to nitric oxide by iodide in acid medium. This reaction is fast and quantitative, and the (15)N abundance of NO can be precisely measured by continuous flow mass spectrometry. This method is used for samples from tracer experiments with artificially enriched nitrogen 15. Therefore, the use of simple quadrupole mass spectrometers directly linked to the reaction unit is possible with sufficient precision (Reaction-Continuous Flow Quadrupole Mass Spektrometry-RCFQMS). Using the technique developed sample volumes up to 10ml containing at least 1.0 μg nitrite-N (0, 1 μg/ml) with a (15)N abundance of ? 0.42 at.% gave a precision of RSD ? ± 3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号