共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ozonolysis of bicyclic 1,2-dioxines was investigated using a variety of 1,4-disubstituted 1,2-dioxines along with a 1,3-dialkyl and steroidal example, with yields ranging from moderate to excellent. Two different pathways were observed upon reaction of the 1,4-disubstituted 1,2-dioxines with ozone; one pathway saw the "expected" results, that is, cleavage of the olefinic moiety with generation of 1,4-dicarbonyl 1,2-dioxines, while the other pathway revealed a previously unobserved rearrangement involving cleavage of the peroxide linkage along with loss of either CO or CO(2). Several unsymmetrical ozonolyses were also performed to further investigate the origins of this rearrangement, and initial mechanistic insights into the fragmentation pathways are discussed. 相似文献
3.
Michelet V Toullec PY Genêt JP 《Angewandte Chemie (International ed. in English)》2008,47(23):4268-4315
Metal-catalyzed cycloisomerization reactions of 1,n-enynes have appeared as conceptually and chemically highly attractive processes as they contribute to the highly demanded search for atom economy and allow the discovery of new reactions. Since the pioneering studies with palladium by the research group of Barry Trost in the mid-1980s, several other metals have been identified as excellent catalysts for the rearrangement of enyne skeletons. Moreover, the behavior of 1,n-enynes may be influenced by other functional groups such as alcohols, aldehydes, ethers, alkenes, or alkynes, thus enhancing the molecular complexity of the synthesized products. Apart from the intrinsic rearrangements of 1,n-enynes, several tandem reactions incorporating intramolecular trapping agents or intermolecular partners have been discovered. This Review aims to highlight the main contributions in this field of catalysis and to propose and comment on the mechanistic insights of the recent discoveries. 相似文献
4.
Richardson RD Desaize M Wirth T 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(23):6745-6754
By detailed study of the possible side reactions in the previously reported aziridination of alkenes with N-aminoheterocycles mediated by hypervalent iodine reagents, the requirements to make this reaction catalytic in iodoarene have been determined. The reaction requires an oxidant that will oxidise iodoarenes but that does not oxidise alkenes, but it is possible that no such oxidant actually exists! A method in which the hypervalent iodine reagent can be recycled without the need for reisolation is possible. Further study into the mechanism of this reaction gives tentative evidence that the reaction proceeds through formation of an aminoiodane that reacts directly with the alkene, contrary to previous literature reports in which an acetoxyamine intermediate is suggested. The temperature effect of this reaction is remarkable. 相似文献
5.
Kalyani D Deprez NR Desai LV Sanford MS 《Journal of the American Chemical Society》2005,127(20):7330-7331
This paper describes a new palladium-catalyzed method for C-H activation/carbon-carbon bond formation with hypervalent iodine arylating agents. This transformation has been applied to a variety of arene and benzylic substrates containing different directing groups (pyridines, quinolines, oxazolidinones, and amides) and proceeds with high levels of regiocontrol. Mechanistic experiments provide preliminary evidence in support of an unusual mechanism for this transformation involving a Pd(II)/Pd(IV) catalytic cycle. 相似文献
6.
Behenna DC Mohr JT Sherden NH Marinescu SC Harned AM Tani K Seto M Ma S Novák Z Krout MR McFadden RM Roizen JL Enquist JA White DE Levine SR Petrova KV Iwashita A Virgil SC Stoltz BM 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(50):14199-14223
α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursor: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center. 相似文献
7.
Liu XY Guo Z Dong SS Li XH Che CM 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(46):12932-12945
An efficient method for the synthesis of tertiary amines through a gold(I)‐catalyzed tandem reaction of alkynes with secondary amines has been developed. In the presence of ethyl Hantzsch ester and [{(tBu)2(o‐biphenyl)P}AuCl]/AgBF4 (2 mol %), a variety of secondary amines bearing electron‐deficient and electron‐rich substituents and a wide range of alkynes, including terminal and internal aryl alkynes, aliphatic alkynes, and electron‐deficient alkynes, underwent a tandem reaction to afford the corresponding tertiary amines in up to 99 % yield. For indolines bearing a preexisting chiral center, their reactions with alkynes in the presence of ethyl Hantzsch ester catalyzed by [{(tBu)2(o‐biphenyl)P}AuCl]/AgBF4 (2 mol %) afforded tertiary amines in excellent yields and with good to excellent diastereoselectivity. All of these organic transformations can be conducted as a one‐pot reaction from simple and readily available starting materials without the need of isolation of air/moisture‐sensitive enamine intermediates, and under mild reaction conditions (mostly room temperature and mild reducing agents). Mechanistic studies by NMR spectroscopy, ESI‐MS, isotope labeling studies, and DFT calculations on this gold(I)‐catalyzed tandem reaction reveal that the first step involving a monomeric cationic gold(I)–alkyne intermediate is more likely than a gold(I)–amine intermediate, a three‐coordinate gold(I) intermediate, or a dinuclear gold(I)–alkyne intermediate. These studies also support the proposed reaction pathway, which involves a gold(I)‐coordinated enamine complex as a key intermediate for the subsequent transfer hydrogenation with a hydride source, and reveal the intrinsic stereospecific nature of these transformations observed in the experiments. 相似文献
8.
Li W Li J Lin M Wacharasindhu S Tabei K Mansour TS 《The Journal of organic chemistry》2007,72(16):6016-6021
Dimethyl sulfoxide (DMSO) efficiently causes the reductive elimination of 3-aryl 2,3-dibromopropanoates to cinnamates with good yield. With 3-phenyl 2,3-dihalopropanoates, debromination is the major pathway providing 3-phenylacrylate derivatives in high yields, whereas dehydrobromination is a competing pathway with thiophene derivatives. 1H NMR, 81Br NMR, and MS techniques indicated the formation of brominated-DMSO, MeBr, and HBr as byproducts in this transformation with no evidence for the formation of Br2. The dual role of DMSO as a nucleophile and bromine scavenger accounts for the products formed in this reaction. 相似文献
9.
Bis(tert-butylperoxy)iodobenzene, generated in situ by the reaction between diacetoxyl iodobenzene (DIB) and tert-butyl hydroperoxide (TBHP), was used in the oxidative transformation of primary azides to nitriles, and secondary azides to ketones. 相似文献
10.
Wang XF Peng L An J Li C Yang QQ Lu LQ Gu FL Xiao WJ 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(23):6484-6491
A highly efficient and enantioselective intramolecular crossed Rauhut-Currier (RC) reaction of nitroolefins with tethered enonates has been developed through cooperative nucleophilic activation and a hydrogen-bonding catalytic strategy (≤98% ee and 98% yield). The reaction features simple experimental procedures and is completely chemoselective and atom-economic in character. The potential synthetic applications have been demonstrated by the conversion of the RC reaction products into biologically and pharmaceutically valuable compounds with highly diastereoselectivity. In addition, computational investigations were employed to support the proposed mechanism and to obtain a good understanding of the origin of the stereoselectivity in RC reactions. 相似文献
11.
Bazán-Tejeda B Bluet G Broustal G Campagne JM 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(32):8358-8366
A direct regio-, diastereo-, and enantiocontrolled access to alpha,beta-unsaturated delta-lactones is described, based on the reaction of a silyl dienolate and an aldehyde in the presence of 10 % of Carreira's catalyst. The scope and limitations of this reaction, as well as mechanistic insights concerning the reactivity of an allyl copper species, are discussed. 相似文献
12.
Georg Süss-Fink Bruno Therrien Mathieu Tschan Thomas R Ward Gabor Laurenczy 《Journal of organometallic chemistry》2004,689(8):1362-1369
By checking the chemistry underlying the concept of “supramolecular cluster catalysis” we identified two major errors in our publications related to this topic, which are essentially due to contamination problems. (1) The conversion of the “closed” cluster cation [H3Ru3(C6H6)(C6Me6)2(O)]+ (1) into the “open” cluster cation [H2Ru3(C6H6)(C6Me6)2(O)(OH)]+ (2), which we had ascribed to a reaction with water in the presence of ethylbenzene is simply an oxidation reaction which occurs in the presence of air. (2) The higher catalytic activity observed with ethylbenzene, which we had erroneously attributed to the “open” cluster cation [H2Ru3(C6H6)(C6Me6)2(O)(OH)]+ (2), was due to the formation of RuO2 · nH2O, caused by a hydroperoxide contamination present in ethylbenzene. 相似文献
13.
[formula: see text] It has been shown that alpha-diazoketones react with allylic alcohols in the presence of Rh(II) catalysts to furnish intermediate enols which subsequently undergo Claisen rearrangement to alpha-hydroxyketones. Herein we report (1) studies into the mechanism of this transformation which establish that Claisen rearrangement is neither rhodium- nor acid-catalyzed but a reaction intrinsic to the intermediate enols that proceeds at a rate governed by enol substituents (R3, R4, R5) and (2) the reaction of alpha-diazoketones with propargylic alcohols and preliminary investigations into its scope and mechanism. 相似文献
14.
Rita Kakkar Mallika Pathak Preeti Chadha 《International journal of quantum chemistry》2005,102(2):189-199
The rearrangement of vinylidene to acetylene has been studied in detail by the density functional method, using Becke's three‐parameter exchange functional and the gradient‐corrected functional of Lee, Yang, and Parr. The rearrangement of the anion, as well as that of fluoro‐substituted systems, has also been investigated, in order to determine the effect of fluorine substitution on the activation barrier to the 1,2‐hydrogen shift, as well as the relative migratory aptitudes of hydrogen and fluorine. Natural bond orbital analysis is invoked to gain insight into the mechanisms of the rearrangements. Basis size effects are also discussed, particularly in relation to anionic systems. The need to include diffuse functions in geometry optimizations of anionic systems is reinforced by the present calculations. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 相似文献
15.
Lee D Williamson CL Chan L Taylor MS 《Journal of the American Chemical Society》2012,134(19):8260-8267
Synthetic and mechanistic aspects of the diarylborinic acid-catalyzed regioselective monofunctionalization of 1,2- and 1,3-diols are presented. Diarylborinic acid catalysis is shown to be an efficient and general method for monotosylation of pyranoside derivatives bearing three secondary hydroxyl groups (7 examples, 88% average yield). In addition, the scope of the selective acylation, sulfonylation, and alkylation is extended to 1,2- and 1,3-diols not derived from carbohydrates (28 examples); the efficiency, generality, and operational simplicity of this method are competitive with those of state-of-the-art protocols including the broadly applied organotin-catalyzed or -mediated reactions. Mechanistic details of the organoboron-catalyzed processes are explored using competition experiments, kinetics, and catalyst structure-activity relationships. These experiments are consistent with a mechanism in which a tetracoordinate borinate complex reacts with the electrophilic species in the turnover-limiting step of the catalytic cycle. 相似文献
16.
MB Brennan TD Claridge RG Compton SG Davies AM Fletcher MC Henstridge DS Hewings W Kurosawa JA Lee PM Roberts AK Schoonen JE Thomson 《The Journal of organic chemistry》2012,77(17):7241-7261
The ammonium-directed olefinic epoxidations of a range of differentially N-substituted cyclic allylic and homoallylic amines (derived from cyclopentene, cyclohexene, and cycloheptene) have been investigated, and the reaction kinetics have been analyzed. The results of these studies suggest that both the ring size and the identity of the substituents on nitrogen are important in determining both the overall rate and the stereochemical outcome of the epoxidation reaction. In general, secondary amines or tertiary amines with nonsterically demanding substituents on nitrogen are superior to tertiary amines with sterically demanding substituents on nitrogen in their ability to promote the oxidation reaction. Furthermore, in all cases examined, the ability of the (in situ formed) ammonium substituent to direct the stereochemical course of the epoxidation reaction is either comparable or superior to that of the analogous hydroxyl substituent. Much slower rates of ring-opening of the intermediate epoxides are observed in cyclopentene-derived and cycloheptene-derived allylic amines as compared with their cyclohexene-derived allylic and homoallylic amine counterparts, allowing for isolation of these intermediates in both of the former cases. 相似文献
17.
18.
Savariar EN Aathimanikandan SV Thayumanavan S 《Journal of the American Chemical Society》2006,128(50):16224-16230
It has been shown by us in a recent communication that homopolymers, in which each repeat unit contains a hydrophilic and a hydrophobic head group, are capable of forming environment-dependent micellar or inverse micellar assemblies. A systematic structure-property relationship study is carried out here to test the scope of the design. We show here that the molecular design is indeed broadly applicable and that there is a significant gain in the critical aggregation concentrations of these polymers, as compared to the small molecule counterparts. We also show that the design can be tuned to achieve vesicle-type assemblies, which further expands the repertoire of amphiphilic homopolymers in a variety of areas. Characterizations of these assemblies have been carried out using transmission electron microscopy, dynamic light scattering, static light scattering, and dye incorporation experiments. 相似文献
19.
Martinelli MJ Vaidyanathan R Pawlak JM Nayyar NK Dhokte UP Doecke CW Zollars LM Moher ED Khau VV Kosmrlj B 《Journal of the American Chemical Society》2002,124(14):3578-3585
This paper describes a convenient protocol for the regioselective sulfonylation of alpha-chelatable alcohols. Typically, the reaction of alpha-heterosubstituted alcohols with 1 equiv of p-TsCl and 1 equiv of Et(3)N in the presence of 2 mol % of Bu(2)SnO leads to rapid, regioselective, and exclusive monotosylation. The pK(a) of the amine was correlated to the reaction rate. A plausible mechanism for this reaction has been proposed on the basis of (119)Sn NMR studies. 相似文献
20.
Imahori T Ojima H Yoshimura Y Takahata H 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(34):10762-10771
An interesting acceleration effect of an allylic hydroxy group on ring-closing enyne metathesis has been found. Ring-closing enyne metathesis of terminal alkynes possessing an allylic hydroxy group proceeded smoothly without the ethylene atmosphere generally necessary to promote the reaction. The synthesis of (+)-isofagomine with the aid of this efficient reaction has been demonstrated. Mechanistic studies of the acceleration effect were also carried out. Results of NMR studies suggested that the reaction proceeded via an "ene-then-yne" pathway. Kinetic studies indicated switching of the rate-determining step as a consequence of the presence of an allylic hydroxy group. These results suggest acceleration of the reentry step of Ru-carbene species by the allylic hydroxy group. 相似文献