首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Characteristic modes of the time development of nonstationary heat convection in a closed planar domain upon a sudden supply of heat from the lateral surface are considered for Rayleigh numbers 103–107. Estimates of the boundaries of the beginning of the influence of convection on the temperature field and the buildup of a quasistationary convection mode in the range of Rayleigh and Fourier numbers are given. Characteristics of the circulation flow, the singularities of the temperature-field configuration and of the heat transfer from the wall to the fluid, are investigated. The mechanism for the origination and disappearance of vertical temperature differences, caused by convection, and the dependence of the vertical temperature differences on the Rayleigh and Fourier numbers, on the thermal mode of the boundary, and the domain geometry, are considered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 109–117, July–August, 1970.The author is grateful to T. D. Pirumov and T. V. Volokitin for assistance in performing the computations.  相似文献   

2.
The combined (free and induced) convection of a viscoplastic Shvedov-Bingham liquid in a plane vertical layer is considered. The influence of the temperature dependence of the yield shear stress on the conditions of occurrence of the flow and the stationary convection regime in the case of heating from the side is investigated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 111–113, November–December, 1979.  相似文献   

3.
The velocity and heat transfer fields near a vertical permeable surface with simultaneous convection are investigated. A solution is found for the boundary layer equations with known laws of surface temperature and flow velocity change. The transformed boundary layer equations contain the parameter G/R2, which determines the effect of free convection on friction and heat transfer for constrained motion. Calculations of friction and heat transfer as functions of draft (suction) with simultaneous convection are presented.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 96–100, March–April, 1973.  相似文献   

4.
The principal characteristics of thermocapillary convection in a rectangular channel with one of the boundaries heated to a temperature higher and the other to a temperature lower than T0 are investigated numerically on the basis of the Navier-Stokes equations. Certain convection characteristics corresponding to normal and anomalous thermocapillary effects are qualitatively compared. The conditions under which self-similar solutions of the type obtained in [10] can be used to describe the flow in a bounded region are determined.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 138–143, January–February, 1991.  相似文献   

5.
Turbulence in thermal convection is investigated for flows in which the production of turbulence energy is due solely to buoyancy, and the statistics of the flow are homogeneous in horizontal planes. New experimental results for high Rayleigh number unsteady turbulent convection in a horizontal layer heated from below and insulated from above are presented and compared to turbulent Rayleigh convection, convection in the planetary boundary layer, and laboratory penetrative convection. Mean temperature fields are correlated in terms of wall layer scales and convection scales. Joint statistics of turbulent temperature and horizontal velocity and vertical velocity through fourth order are presented for the core region of the convection layer.This paper was presented at the Ninth Symposium on Turbulence, University of Missouri-Rolla, October 1–3, 1984  相似文献   

6.
A mathematical model and numerical method are developed and used to investigate nonstationary flow and heat and mass transfer regimes in a melt appropriate to the conditions of Czochralski crystal growth. A study is made of the separate and combined influence of rotation and thermal, concentration, and thermocapillary convection on the distribution of the temperature and the dopant in the range of regime parameters corresponding to large charging masses of the melt with small value of the kinematic viscosity. Large-scale fluctuations are found to occur when rotation and thermal convection interact. Thermocapillary convection is shown to have an important influence on the resulting motion when it interacts with the thermal and concentration forms of convection. A comparison is made with the results of experimental and theoretical investigations of other authors.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 55–65, January–February, 1981.  相似文献   

7.
The problem of convection in an incompressible fluid between two horizontal planes maintained at a constant temperature without friction on the boundaries is considered. The medium is assumed to be turbulent. A theoretical model is constructed using mathematical modeling of the coherent structure in the turbulent flow. This turbulent convection-model has one empirical constant in the relations closing the generalized Reynolds equations. The problem formulated is solved analytically by means of the Stuart-Landau method. The main characteristics of the finite-amplitude ordered convection are obtained and their dependence on the empirical constant is studied.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.6, pp. 49–56, November–December, 1993.  相似文献   

8.
The onset of penetrative convection in an infinite horizontal fluid layer bounded by isothermal rigid or free nondeformable surfaces is numerically examined. It is assumed that the specific volume of the fluid depends quadratically on temperature and reaches a minimum inside the layer. The isothermally incompressible fluid convection model in which, as distinct from the Oberbeck-Boussinesq approximation, the thermal expansion is not assumed to be small is considered. Both the neutral stability curves of the conductive regime and the amplitudes of two-dimensional periodic and three-dimensional doubly-periodic convective flow are calculated. The results are compared with those previously obtained for the equations of penetrative convection in the Boussinesq approximation.Rostov-on-Don. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 40–52, March–April, 1996.  相似文献   

9.
A mathematical model of fluid convection under microgravity conditions is considered. The equation of state is used in a form that allows considering the fluid as a weakly compressible medium. Based on the previously proposed mathematical model of convection of a weakly compressible fluid, unsteady convective motion in a vertical band, with a heat flux periodic in time set on the solid boundaries of this band, is considered. This model of convection allows one to study the problem with the boundary thermal model oscillating in an antiphase rather than in-phase mode, while the latter was required for the model of microconvection of an isothermally incompressible fluid. Exact solutions for velocity components and temperature are derived, and the trajectories of fluid particles are constructed. For comparison, the trajectories predicted by the classical Oberbeck-Boussinesq model of convection and by the microconvection model are presented.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 2, pp. 52–63, March–April, 2005.  相似文献   

10.
This paper investigates the finite-difference solution of the unsteady problem of natural convection in a triangular enclosure based on the use of physical variables: velocity components, pressure, and temperature.Translated from Izvestiya Akademii Nauk SSSR, Uekhanika Shidkosti i Gaza, No. 5, pp. 169–173, September–October, 1985.  相似文献   

11.
12.
The investigation of thermocapillary convection in fluids with a parabolic temperature dependence of the surface tension is continued within the context of the problem formulated in [1].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 3–7, September–October, 1989.  相似文献   

13.
An investigation is made into the influence of van der Waals pressure on the conditions of occurrence of convection in a thin horizontal film of viscous and viscoelastic liquid with a deformable free surface and also the stability of the flat shape of the free surface in the absence of a temperature gradient.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 76–80, September–October, 1982.  相似文献   

14.
The thermal structure of the convective motions of a rotating plane layer of fluid is experimentally investigated in the regular vortex structure regime. It is found that in such a system the intense vortex motion leads to a temperature distribution such that the mean fluid temperature falls linearly from the bottom of the layer to the surface, the temperature gradient being determined by the rate of rotation and depth of the fluid. By dimensional analysis it is shown that this gradient corresponds to heat transfer in which the Nusselt number isolines are parallel to the convection curve. The horizontal structure of the temperature field is investigated; it corresponds to motion in which the fluid descends within a narrow vortex-sink and rises along the edges of a cylinder which determines the characteristic dimension of the structure in rotating fluid convection.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 160–166, November–December, 1987.The author wishes to thank G. S. Golitsyn for his constant interest in the work.  相似文献   

15.
The effect of vertical vibrations on the convection in a rotating planar fluid layer heated from below was studied. In this case a modulation parameter, the acceleration due to gravity, appears in the problem. The modulation of the parameter may have a significant effect on the onset of convective instability. Parameter modulation in nonrotating layers has been investigated in earlier work [1–3]. The presence of rotation significantly increases the complexity of the mathematical problem, introducing an additional dependence of the solution on the Taylor number Ta and the Prandtl number Pr. Furthermore, an oscillatory convection regime can occur at the stability limit in rotating fluids with Pr < 1. Parameter modulation in the rotating fluid may not only lead to a change in the stability limit and critical wavelength but also to a change in the eigenfrequency of the oscillatory convection. Rauscher and Kelly [4] examined the effect of parameter modulation on the convective stability of a rotating fluid only for the particular case of a sinusoidal variation in the temperature gradient with a small amplitude for Pr = 1, i.e., the effect of modulation was studied on only a steady convection regime.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 12–22, July–August, 1984.  相似文献   

16.
Some results are given of an experimental investigation into the free convection in solutions with density which is nonuniform with height. It is shown that convective motion in solutions with a vertical density gradient and lateral heating is cellular in nature. The height of the cells is determined as a function of the temperature head and the density gradient.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 123–126, January–February, 1971.  相似文献   

17.
A study is made of two-dimensional problems of thermal convection of a viscous incompressible gas in rectangular regions that have gas inlet and outlet channels in the presence of a temperature difference between the bottom and the top (the bottom is heated). In contrast to the well-studied case of natural convection, when no-slip conditions are specified on all boundaries of the region and motion in the region occurs only through the temperature difference [1–4], the heat transfer in the investigated flows is complicated by the additional influence of the forced convection of the gas due to the motion of gas through the inlet and outlet channels. Flows of such type simulate well the processes that take place in many heat transfer devices and in ventilated and air-conditioned industrial premises. Two formulations of the problem are considered. In the first, the gas flow through the inlet and outlet channels is assumed given, and the solution of the problem is determined by the dimensionless Prandtl, Grashof, and Reynolds numbers. In the second case, this flow rate is not given but determined during the solution of the problem. The motion in the region arises from the difference between the temperatures of the bottom and the top of the region, and the motion, in its turn, causes a flow of gas through the inlet and outlet channels. As in the case of natural convection, the solution of the problem in this case is determined by only two dimensionless numbers — the Grashof and Prandtl numbers. By numerical solution of the boundary-value problems for the equations of heat transfer a study is made of the influence of the characteristic dimensionless numbers on the hydrodynamic and temperature fields and the heat fluxes through the boundaries of the region. The solutions of the problems in the two formulations are compared for different positions of the outlet channels.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 126–131, September–October, 1979.We thank G. I. Petrov for discussing the results.  相似文献   

18.
The self-similar problem of free convection near a heated vertical plate was solved for the first time in [1] for the simplest case of a constant wall temperature. In [2], Yang proved the existence of a self-similar solution to the problem of free convection for vertical plates and cylinders on the surfaces of which the temperature has a power-law distribution. In [3], Yang's solution was generalized to the case of free convection near a slender figure of revolution, but also only in the self-similar case of a power-law distribution of the temperature on the wall. In [4], this problem was solved in an extended nonsimilar formulation but by an artificial and not general method similar to Gertler's, the convergence of the approximations being slow. The present paper contains the solution to the problem of free convection near a vertical plate with arbitrary distribution of the temperature or heat flux on its surface. Rigorous application of the method of generalized similitude [5] leads in this case to universal equations that present insuperable computational difficulties, which forces one to use a simplified but fairly general method to solve this class of problems.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 167–170, May–June, 1980.I thank L. G. Loitsyanskii and E. M. Smirnov for discussing the results and for valuable comments.  相似文献   

19.
In [1] the problem of natural and thermocapillary convection in a spherical vessel containing a bubble under low-gravity conditions, i.e., at low Bond numbers (Bo 1), was examined in one of the limiting cases — where the bubble is located in the center of the vessel. The results of [1] and experimental data, however, indicate that when heat is supplied from outside over a long period, the most probable location of the bubble under low-gravity conditions is at the vessel wall. In this paper, which is a continuation of [1], convection and heat transfer in the latter case are investigated. Possible locations of the bubble at the top and bottom of the vessel relative to the resultant of the weak mass forces are discussed. It is shown that natural and thermocapillary convection contribute to the increase in the mean free-surface temperature, which determines the increase in pressure in the closed vessel for a prescribed heat flux. The rates of increase of this temperature are compared in the cases considered here and in [1–4], where there is a fuller bibliography relating to convective heat and mass transfer under low-gravity conditions.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 154–159, March–April, 1976.  相似文献   

20.
The main purpose of the study is to investigate the effect of the physical characteristics of an impurity concentrated by an electric field and its location on the onset of convective instability. In constructing the convection model attention is mainly focused on taking into account the concentration effects, while Joule heat release is assumed to be negligibly small and the temperature of the liquid to be constant.Rostov-on-Don. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 150–157, September–October, 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号