首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Nearly monodispersed particles of silica were prepared and coated with uniform layers of titanium dioxide in anatase phase by hydrolysis and condensation of titanium butoxide. The coating thickness could be altered by adjusting the concentration of reactants (titanium butoxide and water) and the amount of added silica particles. Different coating thicknesses were deposited and studied using optical absorption spectroscopy, electron microscopy and Fourier transform infra-red spectroscopy. It was found that silica particles of size 170 ±5 nm were coated with 23±5 nm thick layer of titanium dioxide. Alternatively titania particles of size 340±5 nm were synthesized by controlled hydrolysis of titanium ethoxide in the presence of sodium chloride. These particles were further coated with 135±5 nm thick layer of silica to investigate changes in properties after changing the shell material  相似文献   

2.
The sol-gel route was employed to prepare a titania/silica photocatalyst co-doped with boron and ferrum. The microstructure and the optical property of the photocatalyst were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffusive reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FT-IR), and N2 adsorption-desorption isotherm. The decomposition of phenol under visible light irradiation was used as probe reaction to evaluate the photocatalytic activity. The results revealed that the dopants could inhibit phase transformation of TiO2, and that there were intimate molecule-level interactions between titania and silica. The doping boron led to the response to visible light. The doping ferrum, which existed in the form of Fe2O3 and dispersed on the surface of TiO2, increased photoquantum efficiency and resulted in the enhancement of catalytic performance. The photocatalytic activity related to the annealing temperature and component. The synergistic effects of co-doping and intimate interaction between titania and silica were responsible for the increase of photoactivity.  相似文献   

3.
Pure anatase is a metastable phase and inclined to (transform) be transformed into rutile structure under heating over than 500 °C, which limits its suitability for high-temperature applications. Hitherto much research efforts have been made to increase the stability temperature of anatase structure. However, metallic doping usually introduced metallic oxides into titania at high temperature, and many nonmetallic doping are not competent for increasing the stability temperature of anatase structure up to 900 °C. In this study, F-doped anatase TiO2 nanoparticles were conveniently prepared via the alcoholysis of TiCl4 and the as-prepared product shows very high stability temperature up to 1000 °C before being transformed into rutile structure phase. On the basis of XPS results of F-doped titania annealed at different temperature, it is learned that the F atoms were anchored on the crystal planes of anatase in favor of decreasing the energy faces of anatase and stabilizing the anatase structure till annealed at 1300 °C all the anatase were transformed into rutile phase.  相似文献   

4.
在准静态条件和旋转流体场中采用乳液微封装技术制备约2 mm的大直径W1/O/W2乳粒,研究了有机相浓度和水溶性聚合物浓度对W1/O/W2乳粒稳定性的影响。从乳粒受力和变形的角度,探索了旋转流体场对W1/O/W2乳粒动力学稳定性的增强作用机制。研究表明:无论是在准静态条件下还是旋转流场中,乳粒稳定性都随聚苯乙烯浓度单一上升,随聚乙烯醇浓度呈现先上升后下降的趋势;相对于准静态条件,旋转流体场在一定条件下对大直径W1/O/W2乳粒的动力学稳定具有明显增强作用。  相似文献   

5.
Nanostructured ferroxide particles with initial formula Ni0.5Zn0.5Fe2O4 are investigated. The aim was to explore the monodomain and the superparamagnetic states of the ferrospinel and the impact of the surface magnetic disorder on the magnetization processes. Mössbauer spectroscopy (MöS) demonstrated that the ion distribution follows the general formula (Zn0.5Fe0.5)A[Ni0.5Fe1.5]BO4, where A is the tetrahedral and B, the octahedral sublattice. MöS in an external magnetic field (5 T) at 4.2 K shows non-collinearity of the sublattices’ magnetic moments and deviations in the hyperfine magnetic field that could be related to a canting effect. Magnetic measurements were applied to characterize the temperature behavior of the magnetic properties and the a.c. complex magnetic susceptibility.  相似文献   

6.
Silica and titania nanoparticles were included at mass loadings of 1% and 3% in aqueous HAN propellants to evaluate their effects on liquid- and gas-phase decomposition and combustion. Both the liquid-phase and overall burning rates of propellant formulations were indirectly measured in a constant-volume strand burner filled with Argon from pressures of 3–22?MPa using a novel, pressure-based method developed by the authors in recent work. This approach provides overall burn times for propellants such as aqueous HAN which continue to burn beyond the disappearance of the liquid, making it superior to methods based solely on visual observation which only monitor the liquid surface regression. The presence of silica nanoparticles increased the liquid-phase burning rate in the low- and medium-pressure regimes (<10?MPa) and increased the overall burning rate at all pressures evaluated. The maximum amount of burning rate enhancement was realized at the lowest evaluated pressure (3?MPa) which corresponded to 80% and 670% increases in the liquid-phase and overall burning rates, respectively, for a silica loading of 1%, and 160% and 830% increases in the liquid-phase and overall burning rates, respectively, for a silica loading of 3%. The presence of titania did not measurably affect the liquid-phase burning rate, but it did increase the overall burning rate in the low-pressure regime (<5.7?MPa). This low-pressure overall burning rate enhancement was not amplified by further titania loading from 1% to 3% and was maximized at the lowest evaluated pressure (3?MPa) which corresponded to a 500% increase in the overall burning rate. The observed enhancements of the propellant's liquid-phase and overall burning rates were attributed to the presence of catalytic processes which diminish at higher pressures. This work represents the first time nanoparticle additives have been utilized to tailor the combustion of liquid HAN-based monopropellants.  相似文献   

7.
In the present study, the buffering effect of magnetite nanoparticles (Fe3O4) dispersed in an aqueous solution on the local pHpH value is investigated. It manifests itself in the fact that when some amount of acid or base is added to the solution then the solution near the nanoparticles surface becomes, respectively, less acidic and less alkaline than it is expected. It is the result of both the local electrostatic field, which represents the electric double layer at the surface of magnetic nanoparticles and the magnetic field around the nanoparticles. The magnetite nanoparticles exhibit very low toxicity and they are becoming increasingly important for new biomedical applications related to their effects on chemical reactions in body tissues and cells. The question arises, how strong are these effects at the nanoscale? The strength of the buffering property of magnetite nanoparticles is investigated both theoretically and experimentally by the direct measurement of the local pHpH value of a magnetic nanoparticles suspension. The theoretical model is based on stochastic equations describing the ions diffusing in the neighborhood of the electric double layer of the magnetic material. The electric double layer is modeled with the help of the Poisson–Boltzmann model. It is directly shown that both the electrostatic field and the magnetic field are responsible for the observed local changes of the pHpH value with respect to the bulk pHpH value.  相似文献   

8.
The surface properties of plasma sprayed Al2O3- and TiO2-based coating materials were characterized in order to investigate the influence of surface strain and phase inhomogenity. The materials were water exposed up to 8 months. The bulk crystallographic structure, dissolution behaviour, effective charge (zeta potential, isoelectric point), surface compositions and oxidation states were determined. In addition, the properties of the aging solutions, such as conductivity, supernatant pH (point of zero charge), and redox potential, were monitored during aging.It was shown that the materials were stable under aging conditions, but that considerable surface rearrangements, such as dissolution-reprecipitation and surface site redistributions may occur. However, overall only minor changes in surface properties results from this restructuring process.  相似文献   

9.
A novel and simple strategy of morphology-controlled Sr Ti O3(ST) micro-scale particle synthesis by the flux method is reported. Systematic experiments are designed to realize the tunable morphologies of the particles when the flux salt,sintering process, and the precursors are changed. The ST plates can be synthesized by plate-like Bi4Ti3O12(BIT) precursors in Na Cl flux. However, the as-synthesized Bi4Ti3O12 grains transform into reticular particles and finally into rods at higher temperature in Na Cl and KCl compounds. Besides, cubic ST particles are also prepared using different precursors as a comparative experiment. This study provides a strategy for further investigations in designing the morphology-controlled particles and efficient anisotropic materials of perovskite structure such as ferroelectric and photocatalyst.  相似文献   

10.
奚小网  胡林华  徐炜炜  戴松元 《物理学报》2011,60(11):118203-118203
借助于强度调制光电流谱(IMPS)和强度调制光电压谱(IMVS)技术,研究了纳米TiO2多孔薄膜在TiCl4溶液处理后组装成的染料敏化太阳电池(DSC)中电子传输和背反应动力学特性. 研究表明:纳米TiO2多孔薄膜经TiCl4溶液处理后,电池中暗电流减小,电子寿命τn明显延长,电子传输时间τd缩短,电子有效扩散系数Dn增大,电子扩散长度Ln值升高,入射单色光子/电子转化效率ηIPCE增加,光生电荷量Qoc显著增加. 文章从微观层面上研究了TiCl4溶液处理纳米TiO2多孔薄膜对DSC内部电子的产生、传输和复合过程的影响,从而很好地解释了电池光伏性能随TiCl4溶液处理的变化关系. 关键词: 4')" href="#">TiCl4 电子传输 染料敏化 太阳电池  相似文献   

11.
Bulk (1 0 0) n-GaSb surfaces have been treated with a sulphur based solution ((NH4)2S/(NH4)2SO4) to which sulphur has been added, not previously reported for the passivation of GaSb surfaces. Au/n-GaSb Schottky barrier diodes (SBDs) fabricated on the treated material show significant improvement compared to that of the similar SBDs on the as-received material as evidenced by the lower ideality factor (n), higher barrier height (?b) and lower contact resistance obtained. Additionally, the reverse leakage current, although not saturating, has been reduced by almost an order of magnitude at −0.2 V. The sample surfaces were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The native oxide, Sb–O, present on the as-received material is effectively removed on treating with ([(NH4)2S/(NH4)2SO4]+S) and (NH4)2S. Analysis of the as-received surface by XPS, prior to and after argon sputtering, suggests that the native oxide layer is ≤8.5 nm.  相似文献   

12.
The aim of this study is to investigate the effects of pulse electrodeposition parameters on the properties of nickel-titania composite coatings electrodeposited from a nickel Watts type bath. The effects of average current density, frequency and duty cycle on the surface morphology, crystal size, preferred orientation of the deposits and the amount of embedded nano-TiO2 particles in the composite coatings were investigated. The results represented the optimum amount of average current density (e.g., 4 A dm−2) for obtaining the highest volume percentage of the incorporated titania particles and subsequently the maximum microhardness. Moreover, by increasing the frequency up to 10 Hz while reducing the duty cycle to 10% at constant peak current density, the volume percentage of particles increased to about 7% which is almost twice as much the volume percentage as deposited particles in direct current method. According to the results the composite coating exhibited obviously [1 0 0] + [2 1 1] as preferred orientation at low pulse frequency and the diffraction intensity of the [2 1 1] fiber orientation is increased, probably due to the pH increase adjacent to the electrolyte/cathode interface at higher frequencies. Also, it has been found that by reduction in the duty cycle, more titania particles were incorporated in the composite coatings and this promoted the nickel crystals growth on [1 0 0] planes and consequently the coatings preferred orientation changed from the [2 1 1] to [1 0 0] + [2 1 1] planes.  相似文献   

13.
Despite the large number of studies on the electrochemical behavior of LiV3O8 as a cathode material in nonaqueous lithium ion batteries, little information is available about the electrochemical behavior of LiV3O8 as an anode material in aqueous rechargeable lithium batteries. In this work, nanostructured LiV3O8 is successfully prepared using a low-temperature solid-state method. The electrochemical properties of the LiV3O8 electrode in 1 M, 5 M, and saturated LiNO3 aqueous electrolytes have been characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge experiments. The results show that LiV3O8 electrode in saturated LiNO3 electrolyte exhibits good electrochemical performance in terms of specific capacity and electrochemical cycling performance. LiV3O8 electrode can be reversibly cycled in saturated LiNO3 aqueous electrolyte for 300 cycles at a rate of 0.5 C (300 mA g−1 is assumed to be 1 C rate) with impressive specific capacities.  相似文献   

14.
通过数值模拟对T型通道中微液滴粒径控制的主要因素进行探讨,并结合实验验证确定了稳定控制液滴粒径的条件。结果表明离散相与连续相入口管径比及流速比是控制粒径的主要因素,并获得了50,80,120 m粒径的SiO2微球(入口管径比为5,流速比为4,6,10),其球形度大于93%,单分散性小于5%。实验结果与数值模拟匹配性较好。  相似文献   

15.
Adsorption of pure CO2 on SBA-15 impregnated with branched polyethyleneimine (PEI) has been studied. Materials were prepared by impregnating the pore surface of SBA-15 mesoporous silica with different amounts of branched PEI (10, 30, 50 and 70 wt%). Textural properties, elemental analysis and low angle XRD measurements of the prepared samples showed a progressive pore filling of SBA-15 as PEI loading was increased. Pure CO2 adsorption isotherms on these modified SBA-15 materials were obtained at 45 °C, showing high adsorption efficiency for CO2 removal at 1 bar. Chemisorption of CO2 on amino sites of the modified SBA-15 seems to be the main adsorption mechanism. PEI content of impregnated SBA-15 influences the adsorption capacity of the material, being a relevant variable for CO2 removal by adsorption. Temperature effect on adsorption was also studied in the range 25-75 °C, showing that temperature strongly influences CO2 adsorption capacity. Adsorption capacity was also tested after regeneration of the PEI-impregnated SBA-15 materials. Our results show that these branched PEI-impregnated materials are very efficient even at low pressure and after several adsorption-regeneration cycles.  相似文献   

16.
The Tb3+ electron paramagnetic resonances of a spherically shaped LiTbF4 single crystal were measured with the static magnetic field along the c-axis, using an HCN laser at 890.8 and 964.3 GHz. At 4.2 K the measured spectrum consists of four hyperfine lines which have a spacing of 25.0± 0.2 mT and a width of roughly 10 mT. The g-factor is 17.75 ± 0.1 at both frequencies. In each hyperfine line of the spectrum at 4.2 K a superimposed structure is seen. This structure is explained by changes in the dispersion of the LiTbF4 crystal.  相似文献   

17.
This paper reports CeO2/YSZ/Y2O3 buffer layers deposited on biaxially textured NiW substrates by DC reactive sputtering in a reel-to-reel system. The effect of partial pressure of water vapor (PH2O) on surface morphology and orientation of the Y2O3 films was examined. The obtained CeO2/YSZ/Y2O3 buffer layers exhibit a highly biaxial texture, with in- and out-of-plane FWHM values respectively in the range of 6.0–7.0° and 4.5–5.5°. Crystallographic consistency of CeO2/YSZ/Y2O3 along meter length is excellent. Atomic force microscope observation (AFM) reveals a smooth, continuous and crack-free surface with a Root-mean-square roughness (RMS) lower than 10 nm.  相似文献   

18.
The continuous and highly intergrown anatase-free TS-1 film was fabricated with TiCl3 as the titanium source for the first time. The in situ nucleation and secondary growth method was employed to synthesize the TS-1 film. By means of scanning electron microscopy (SEM) images, X-ray diffraction (XRD) patterns, and FT-IR and UV-vis spectra measurements, the resulting film was observed to be anatase-free, continuous and highly intergrown with the MFI-type structure, and the Ti atoms existed only in tetrahedral coordination.  相似文献   

19.
Fe3O4/silica composite nanospheres with different surface structure and morphology were synthesized by changing reaction conditions. As-synthesized nanospheres were characterized by high performance particle sizer (HPPS), transmission electron microscopy (TEM), nitrogen adsorption and thermogravimetry (TGA). Besides thoroughly characterization, the particles were used for DNA extraction. We found that the particle surface structure and morphology affected the nucleic acid extraction efficiency. When comparing different samples with the same silanol density (1018), the one with a surface area of 60.37 m2/g extracted DNA most effectively. Also, with increasing silanol density per surface area, DNA extraction efficiency increased.  相似文献   

20.
通过数值模拟对T型通道中微液滴粒径控制的主要因素进行探讨,并结合实验验证确定了稳定控制液滴粒径的条件。结果表明离散相与连续相入口管径比及流速比是控制粒径的主要因素,并获得了50,80,120 m粒径的SiO2微球(入口管径比为5,流速比为4,6,10),其球形度大于93%,单分散性小于5%。实验结果与数值模拟匹配性较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号