首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Including integer variables into traditional stochastic linear programs has considerable implications for structural analysis and algorithm design. Starting from mean-risk approaches with different risk measures we identify corresponding two- and multi-stage stochastic integer programs that are large-scale block-structured mixed-integer linear programs if the underlying probability distributions are discrete. We highlight the role of mixed-integer value functions for structure and stability of stochastic integer programs. When applied to the block structures in stochastic integer programming, well known algorithmic principles such as branch-and-bound, Lagrangian relaxation, or cutting plane methods open up new directions of research. We review existing results in the field and indicate departure points for their extension. Received: December 2, 2002 / Accepted: April 23, 2003 Published online: May 28, 2003 Mathematics Subject Classification (2000): 90C15, 90C11, 90C06, 90C57  相似文献   

2.
 This paper develops a polyhedral approach to the design, analysis, and computation of dynamic allocation indices for scheduling binary-action (engage/rest) Markovian stochastic projects which can change state when rested (restless bandits (RBs)), based on partial conservation laws (PCLs). This extends previous work by the author [J. Ni?o-Mora (2001): Restless bandits, partial conservation laws and indexability. Adv. Appl. Probab. 33, 76–98], where PCLs were shown to imply the optimality of index policies with a postulated structure in stochastic scheduling problems, under admissible linear objectives, and they were deployed to obtain simple sufficient conditions for the existence of Whittle's (1988) RB index (indexability), along with an adaptive-greedy index algorithm. The new contributions include: (i) we develop the polyhedral foundation of the PCL framework, based on the structural and algorithmic properties of a new polytope associated with an accessible set system -extended polymatroid}); (ii) we present new dynamic allocation indices for RBs, motivated by an admission control model, which extend Whittle's and have a significantly increased scope; (iii) we deploy PCLs to obtain both sufficient conditions for the existence of the new indices (PCL-indexability), and a new adaptive-greedy index algorithm; (iv) we interpret PCL-indexability as a form of the classic economics law of diminishing marginal returns, and characterize the index as an optimal marginal cost rate; we further solve a related optimal constrained control problem; (v) we carry out a PCL-indexability analysis of the motivating admission control model, under time-discounted and long-run average criteria; this gives, under mild conditions, a new index characterization of optimal threshold policies; and (vi) we apply the latter to present new heuristic index policies for two hard queueing control problems: admission control and routing to parallel queues; and scheduling a multiclass make-to-stock queue with lost sales, both under state-dependent holding cost rates and birth-death dynamics. Received: April 2000 / Accepted: October 2002 Published online: December 9, 2002 RID="★" ID="★" Work partly supported by the Spanish Ministry of Science and Technology (grant BEC2000-1027), NATO (Collaborative Linkage Grant PST.CLG.976568), and the Joint Spanish-US (Fulbright) Commission for Scientific and Technical Exchange (project 2000-20132) Key words. Markov decision process – restless bandits – polyhedral combinatorics – extended polymatroid – adaptive-greedy algorithm – dynamic allocation index – stochastic scheduling – threshold policy – index policy – Gittins index – Klimov index – Whittle index – control of queues – admission control – routing – make-to-stock – multiclass queue – finite buffers – conservation laws – achievable performance Mathematics Subject Classification (1991): (AMS 2000 Subject Classification): 90B36, 90B22, 90C40, 90C57, 90C08  相似文献   

3.
 We introduce a new upper bound for the maximum-entropy sampling problem. Our bound is described as the solution of a linear integer program. The bound depends on a partition of the underlying set of random variables. For the case in which each block of the partition has bounded cardinality, we describe an efficient dynamic-programming algorithm to calculate the bound. For the very special case in which the blocks have no more than two elements, we describe an efficient algorithm for calculating the bound based on maximum-weight matching. This latter formulation has particular value for local-search procedures that seek to find a good partition. We relate our bound to recent bounds of Hoffman, Lee and Williams. Finally, we report on the results of some computational experiments. Received: September 27, 2000 / Accepted: July 26, 2001 Published online: September 5, 2002 Key words. experimental design – design of experiments – entropy – maximum-entropy sampling – matching – integer program – spectral bound – Fischer's inequality – branch-and-bound – dynamic programming Mathematics Subject Classification (2000): 52B12, 90C10 Send offprint requests to: Jon Lee Correspondence to: Jon Lee  相似文献   

4.
 We study Graver test sets for linear two-stage stochastic integer programs and show that test sets can be decomposed into finitely many building blocks whose number is independent on the number of scenarios of the stochastic program. We present a finite algorithm to compute the building blocks directly, without prior knowledge of test set vectors. Once computed, building blocks can be employed to solve the stochastic program by a simple augmentation scheme, again without explicit knowledge of test set vectors. Finally, we report preliminary computational experience. Received: March 14, 2002 / Accepted: March 27, 2002 Published online: September 27, 2002 Key words. test sets – stochastic integer programming – decomposition methods Mathematics Subject Classification (2000): 90C15, 90C10, 13P10  相似文献   

5.
In this paper we propose a weighted-path-following interior-point algorithm to monotone mixed linear complementarity problem. The algorithm is based on a new technique for finding a class of search directions and the strategy of the central path. At each iteration, we only use full-Newton step. Finally, the currently best known iteration bound for the algorithm with a small-update method, namely, O(√nlog n/ε) is derived, which is as good as the bound for the linear optimization analogue.  相似文献   

6.
 We perform a smoothed analysis of a termination phase for linear programming algorithms. By combining this analysis with the smoothed analysis of Renegar's condition number by Dunagan, Spielman and Teng (http://arxiv.org/abs/cs.DS/0302011) we show that the smoothed complexity of interior-point algorithms for linear programming is O(m 3 log(m/Σ)). In contrast, the best known bound on the worst-case complexity of linear programming is O(m 3 L), where L could be as large as m. We include an introduction to smoothed analysis and a tutorial on proof techniques that have been useful in smoothed analyses. Received: December 10, 2002 / Accepted: April 28, 2003 Published online: June 5, 2003 Key words. smoothed analysis – linear programming – interior-point algorithms – condition numbers Mathematics Subject Classification (1991): 90C05, 90C51, 68Q25  相似文献   

7.
We propose a new O(n)-space implementation of the GKO-Cauchy algorithm for the solution of linear systems where the coefficient matrix is Cauchy-like. Moreover, this new algorithm makes a more efficient use of the processor cache memory; for matrices of size larger than n ≈ 500–1,000, it outperforms the customary GKO algorithm. We present an applicative case of Cauchy-like matrices with non-reconstructible main diagonal. In this special instance, the O(n) space algorithms can be adapted nicely to provide an efficient implementation of basic linear algebra operations in terms of the low displacement-rank generators.  相似文献   

8.
We consider a linear programming problem with unknown objective function. Random observations related to the unknown objective function are sequentially available. We define a stochastic algorithm, based on the simplex method, that estimates an optimal solution of the linear programming problem. It is shown that this algorithm converges with probability one to the set of optimal solutions and that its failure probability is of order inversely proportional to the sample size. We also introduce stopping criteria for the algorithm. The asymptotic normality of some suitably defined residuals is also analyzed. The proposed estimation algorithm is motivated by the stochastic approximation algorithms but it introduces a generalization of these techniques when the linear programming problem has several optimal solutions. The proposed algorithm is also close to the stochastic quasi-gradient procedures, though their usual assumptions are weakened.Mathematics Subject Classification (2000): 90C05, 62L20, 90C15Acknowledgments. I would like to thank two unknown referees for their fruitful suggestions that have helped to improve the paper.  相似文献   

9.
Solving semidefinite-quadratic-linear programs using SDPT3   总被引:3,自引:1,他引:2  
 This paper discusses computational experiments with linear optimization problems involving semidefinite, quadratic, and linear cone constraints (SQLPs). Many test problems of this type are solved using a new release of SDPT3, a Matlab implementation of infeasible primal-dual path-following algorithms. The software developed by the authors uses Mehrotra-type predictor-corrector variants of interior-point methods and two types of search directions: the HKM and NT directions. A discussion of implementation details is provided and computational results on problems from the SDPLIB and DIMACS Challenge collections are reported. Received: March 19, 2001 / Accepted: January 18, 2002 Published online: October 9, 2002 Mathematics Subject Classification (2000): 90C05, 90C22  相似文献   

10.
An algorithm for linear semi-infinite programming is presented which accelerates the convergence of the central cutting plane algorithm first proposed in [4]. Compared with other algorithms, the algorithm in [4] has the advantage of being applicable under mild conditions and of providing feasible solutions. However its convergence has been shown to be rather slow in practical instances. The algorithm proposed in this paper introduces a simple acceleration scheme which gives faster convergence, as confirmed by several examples, as well as an interval of prefixed length containing the optimum value. It is also shown that the algorithm provides a solution of the dual problem and that it can be used for convex semi-infinite programming too.Mathematics Subject Classification (1991): 90C05, 90C34, 65K05, 90C51Acknowledgments. The author whishes to thank the three anonymous referees and an associate editor for many useful comments and valuable suggestions.  相似文献   

11.
A new polynomial-time algorithm for linear programming   总被引:128,自引:0,他引:128  
We present a new polynomial-time algorithm for linear programming. In the worst case, the algorithm requiresO(n 3.5 L) arithmetic operations onO(L) bit numbers, wheren is the number of variables andL is the number of bits in the input. The running-time of this algorithm is better than the ellipsoid algorithm by a factor ofO(n 2.5). We prove that given a polytopeP and a strictly interior point a εP, there is a projective transformation of the space that mapsP, a toP′, a′ having the following property. The ratio of the radius of the smallest sphere with center a′, containingP′ to the radius of the largest sphere with center a′ contained inP′ isO(n). The algorithm consists of repeated application of such projective transformations each followed by optimization over an inscribed sphere to create a sequence of points which converges to the optimal solution in polynomial time. This is a substantially revised version of the paper presented at the Symposium on Theory of Computing, Washington D. C., April 1984.  相似文献   

12.
A new algorithm to calculate the conjugacy classes of subgroups of index p and p 2 of a p-group is presented. It uses a surprising relation between the commutator subgroup of a p-group and linear algebra. The algorithm is by magnitudes faster and uses much less memory than the usual “Neubüser-Felsch” algorithm. However, it is restricted to this special case.  相似文献   

13.
 The authors of this paper recently introduced a transformation [4] that converts a class of semidefinite programs (SDPs) into nonlinear optimization problems free of matrix-valued constraints and variables. This transformation enables the application of nonlinear optimization techniques to the solution of certain SDPs that are too large for conventional interior-point methods to handle efficiently. Based on the transformation, we proposed a globally convergent, first-order (i.e., gradient-based) log-barrier algorithm for solving a class of linear SDPs. In this paper, we discuss an efficient implementation of the proposed algorithm and report computational results on semidefinite relaxations of three types of combinatorial optimization problems. Our results demonstrate that the proposed algorithm is indeed capable of solving large-scale SDPs and is particularly effective for problems with a large number of constraints. Received: June 22, 2001 / Accepted: January 20, 2002 Published online: December 9, 2002 RID="†" ID="†"Computational results reported in this paper were obtained on an SGI Origin2000 computer at Rice University acquired in part with support from NSF Grant DMS-9872009. RID="⋆" ID="⋆"This author was supported in part by NSF Grants CCR-9902010, INT-9910084 and CCR-0203426 RID="⋆⋆" ID="⋆⋆"This author was supported in part by NSF Grants CCR-9902010, INT-9910084 and CCR-0203113 RID="⋆⋆⋆" ID="⋆⋆⋆"This author was supported in part by DOE Grant DE-FG03-97ER25331, DOE/LANL Contract 03891-99-23 and NSF Grant DMS-9973339. Key Words. semidefinite program – semidefinite relaxation – nonlinear programming – interior-point methods – limited memory quasi-Newton methods. Mathematics Subject Classification (1991): 90C06, 90C27, 90C30.  相似文献   

14.
This paper considers the following inverse optimization problem: given a linear program, a desired optimal objective value, and a set of feasible cost vectors, determine a cost vector such that the corresponding optimal objective value of the linear program is closest to the desired value. The above problem, referred here as the inverse optimal value problem, is significantly different from standard inverse optimization problems that involve determining a cost vector for a linear program such that a pre-specified solution vector is optimal. In this paper, we show that the inverse optimal value problem is NP-hard in general. We identify conditions under which the problem reduces to a concave maximization or a concave minimization problem. We provide sufficient conditions under which the associated concave minimization problem and, correspondingly, the inverse optimal value problem is polynomially solvable. For the case when the set of feasible cost vectors is polyhedral, we describe an algorithm for the inverse optimal value problem based on solving linear and bilinear programming problems. Some preliminary computational experience is reported.Mathematics Subject Classification (1999):49N45, 90C05, 90C25, 90C26, 90C31, 90C60Acknowledgement This research has been supported in part by the National Science Foundation under CAREER Award DMII-0133943. The authors thank two anonymous reviewers for valuable comments.  相似文献   

15.
Ideas of a simplicial variable dimension restart algorithm to approximate zero points onR n developed by the authors and of a linear complementarity problem pivoting algorithm are combined to an algorithm for solving the nonlinear complementarity problem with lower and upper bounds. The algorithm can be considered as a modification of the2n-ray zero point finding algorithm onR n . It appears that for the new algorithm the number of linear programming pivot steps is typically less than for the2n-ray algorithm applied to an equivalent zero point problem. This is caused by the fact that the algorithm utilizes the complementarity conditions on the variables. This work is part of the VF-program “Equilibrium and Disequilibrium in Demand and Supply,” which has been approved by the Netherlands Ministry of Education and Sciences.  相似文献   

16.
 This paper introduces an exact primal augmentation algorithm for solving general linear integer programs. The algorithm iteratively substitutes one column in a tableau by other columns that correspond to irreducible solutions of certain linear diophantine inequalities. We prove that various versions of our algorithm are finite. It is a major concern in this paper to show how the subproblem of replacing a column can be accomplished effectively. An implementation of the presented algorithms is given. Computational results for a number of hard 0/1 integer programs from the MIPLIB demonstrate the practical power of the method. Received: April 23, 2001 / Accepted: May 2002 Published online: March 21, 2003 RID="*" ID="*" Supported by grants FKZ 0037KD0099 and FKZ 2495A/0028G of the Kultusministerium of Sachsen-Anhalt. RID="*" ID="*" Supported by grants FKZ 0037KD0099 and FKZ 2495A/0028G of the Kultusministerium of Sachsen-Anhalt. RID="*" ID="*" Supported by grants FKZ 0037KD0099 and FKZ 2495A/0028G of the Kultusministerium of Sachsen-Anhalt. RID="#" ID="#"Supported by a Gerhard-Hess-Preis and grant WE 1462 of the Deutsche Forschungsgemeinschaft, and by the European DONET program TMR ERB FMRX-CT98-0202. Mathematics Subject Classification (1991): 90C10  相似文献   

17.
 In this paper a new class of proximal-like algorithms for solving monotone inclusions of the form T(x)∋0 is derived. It is obtained by applying linear multi-step methods (LMM) of numerical integration in order to solve the differential inclusion , which can be viewed as a generalization of the steepest decent method for a convex function. It is proved that under suitable conditions on the parameters of the LMM, the generated sequence converges weakly to a point in the solution set T −1 (0). The LMM is very similar to the classical proximal point algorithm in that both are based on approximately evaluating the resolvants of T. Consequently, LMM can be used to derive multi-step versions of many of the optimization methods based on the classical proximal point algorithm. The convergence analysis allows errors in the computation of the iterates, and two different error criteria are analyzed, namely, the classical scheme with summable errors, and a recently proposed more constructive criterion. Received: April 2001 / Accepted: November 2002 Published online: February 14, 2003 Key Words. proximal point algorithm – monotone operator – numerical integration – strong stability – relative error criterion Mathematics Subject Classification (1991): 20E28, 20G40, 20C20  相似文献   

18.
In this paper we give a new convergence analysis of a projective scaling algorithm. We consider a long-step affine scaling algorithm applied to a homogeneous linear programming problem obtained from the original linear programming problem. This algorithm takes a fixed fraction λ≤2/3 of the way towards the boundary of the nonnegative orthant at each iteration. The iteration sequence for the original problem is obtained by pulling back the homogeneous iterates onto the original feasible region with a conical projection, which generates the same search direction as the original projective scaling algorithm at each iterate. The recent convergence results for the long-step affine scaling algorithm by the authors are applied to this algorithm to obtain some convergence results on the projective scaling algorithm. Specifically, we will show (i) polynomiality of the algorithm with complexities of O(nL) and O(n 2 L) iterations for λ<2/3 and λ=2/3, respectively; (ii) global covnergence of the algorithm when the optimal face is unbounded; (iii) convergence of the primal iterates to a relative interior point of the optimal face; (iv) convergence of the dual estimates to the analytic center of the dual optimal face; and (v) convergence of the reduction rate of the objective function value to 1−λ.  相似文献   

19.
In Stolyar (Queueing Systems 50 (2005) 401–457) a dynamic control strategy, called greedy primal-dual (GPD) algorithm, was introduced for the problem of maximizing queueing network utility subject to stability of the queues, and was proved to be (asymptotically) optimal. (The network utility is a concave function of the average rates at which the network generates several “commodities.”) Underlying the control problem of Stolyar (Queueing Systems 50 (2005) 401–457) is a convex optimization problem subject to a set of linear constraints. In this paper we introduce a generalized GPD algorithm, which applies to the network control problem with additional convex (possibly non-linear) constraints on the average commodity rates. The underlying optimization problem in this case is a convex problem subject to convex constraints. We prove asymptotic optimality of the generalized GPD algorithm. We illustrate key features and applications of the algorithm on simple examples. AMS Subject Classifications: 90B15 · 90C25 · 60K25 · 68M12  相似文献   

20.
This paper describes components of a branch-and-cut algorithm for solving integer linear programs having a large symmetry group. It describes an isomorphism pruning algorithm and variable setting procedures using orbits of the symmetry group. Pruning and orbit computations are performed by backtracking procedures using a Schreier-Sims table for representing the symmetry group. Applications to hard set covering problems, generation of covering designs and error correcting codes are given.Mathematics Subject Classification (2000):90C10, 90C27, 90C57  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号