首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetra-n-butyl ammonium bromide (TBAB) semi-clathrate (sc) hydrates of gas are of prime importance in the secondary refrigeration domain and in the separation of gas molecules by molecular size. However, there is a scarcity of dissociation enthalpies under pressure of pure gases and gases mixtures for such systems. In addition, the phase equilibrium of TBAB sc hydrates of several pure gases is not well defined yet as a function of the TBAB concentration and as a function of the pressure. In this paper, dissociation enthalpies and the phase equilibrium of TBAB sc hydrates of gas have been investigated by differential scanning calorimetry (DSC) under pressure. Pure gases such as N2 and CO2 and gases mixtures such as N2 +  CO2 and CH4 +  CO2 were studied. To our knowledge, we present the first phase diagram of TBAB sc hydrates of N2 for different pressures of gas in the TBAB concentration range from 0.170 to 0.350 wt. Enthalpies of dissociation of TBAB sc hydrates of pure gases and gases mixtures were determined as a function of the presssure for a compound with a congruent melting point whose hydration number corresponds to 26.  相似文献   

2.
The application of semi-clathrate hydrate formation technology for gas separation purposes has gained much attention in recent years. Consequently, there is a demand for experimental data for relevant semi-clathrate hydrate phase equilibria. In this work, semi-clathrate hydrate dissociation conditions for the system comprising mixtures of {CO2 (0.151/0.399 mole fraction) + N2 (0.849/0.601 mole fraction) + 0.05, 0.15, and 0.30 mass fraction tetra-n-butylammonium bromide (TBAB)} aqueous solutions have been measured and are reported. An experimental apparatus which was designed and built in-house was used for the measurements using the isochoric pressure-search method. The range of conditions for the measurements was from 277.1 K to 293.2 K for temperature and pressures up to 16.21 MPa. The phase equilibrium data measured demonstrate the high hydrate promotion effects of TBAB aqueous solutions.  相似文献   

3.
Comprehensive studies on semi-clathrate hydrates phase equilibria are still required to better understand characteristics of this type of clathrates. In this communication, new experimental data on the dissociation conditions of semi-clathrate hydrates of {carbon dioxide + tetra-n-butyl-ammonium bromide (TBAB)} aqueous solution are first reported in a wide range of TBAB concentrations and at different pressures and temperatures. A thermodynamic model is then proposed to predict the dissociation conditions of the semi-clathrate hydrates for the latter system. The (hydrate + TBAB) aqueous solution (H + Lw) phase equilibrium prediction is considered based on Gibbs free energy minimization approach. A modified van der Waals–Platteeuw solid solution theory developed based on the (H + Lw) equilibrium information is employed to predict the dissociation conditions of semi-clathrate hydrates of carbon dioxide + TBAB. The properties of the aqueous solution are estimated using the AMSA-NRTL electrolyte model (considering the association and hydration of ions). The Peng–Robinson equation of state is used for estimating the gas/vapour phase properties. Results show that the proposed model satisfactorily predicts the experimental values with an average absolute relative deviation of approximately 13%.  相似文献   

4.
The phase behaviour of the system water?Ctri-n-butylmethylammonium chloride (TBMAC)?CCO2 was investigated by pressure-controlled differential scanning calorimetry in the range 0?C10?mol% TBMAC in water and at CO2 pressures ranging from 0 to 1.5?MPa. In the absence of CO2, an incongruent melting hydrate, which estimated composition corresponds to TBMAC·30H2O, crystallizes at temperatures below ?13.6?°C and forms with ice a peritectic phase at approximately 3.9?mol% TBMAC. In the presence of CO2 at pressures as low as 0.5?MPa, curves evidenced the presence of an additional phase exhibiting congruent melting at temperatures that are strongly pressure dependent and significantly higher than those of hydrates obtained without CO2. This new phase, whose enthalpy of dissociation and CO2 content increase slightly with CO2 pressure, was identified as a mixed semi-clathrate hydrate of TBMAC and CO2 of general formula: (TBMAC?+?xCO2)·30H2O.  相似文献   

5.
6.
Semi-clathrate hydrates are attractive heat storage materials because the equilibrium temperatures, located above 0 °C in most cases, can be changed by selecting guest cations and anions. The equilibrium temperatures are influenced by the size and hydrophilicity of guest ions, hydration number, crystal structure, and so on. This indicates that intermolecular and/or interionic interaction in the semi-clathrate hydrates may be related to the variation of the equilibrium temperatures. Therefore, intermolecular and/or interionic interaction in semi-clathrate hydrates with quaternary onium salts was directly observed using low-frequency Raman spectroscopy, a type of terahertz spectroscopy. The results show that Raman peak positions were mostly correlated with the equilibrium temperatures: in the semi-clathrate hydrates with higher equilibrium temperatures, Raman peaks around 65 cm−1 appeared at a higher wavenumber and the other Raman peaks at around 200 cm−1 appeared at a lower wavenumber. Low-frequency Raman observation is a valuable tool with which to study the equilibrium temperatures in semi-clathrate hydrates.  相似文献   

7.
CO2 capture by hydrate formation is a novel gas separation technology, by which CO2 is selectively engaged in the cages of hydrate and is separated with other gases, based on the differences of phase equilibrium for CO2 and other gases. However, rigorous temperature and pressure, high energy cost and industrialized hydration separator dragged the development of the hydrate based CO2 capture. In this paper, the key problems in CO2 capture from the different sources such as shifted synthesis gas, flue gas and sour natural gas or biogas were analyzed. For shifted synthesis gas and flue gas, its high energy consumption is the barrier, and for the sour natural gas or biogas (CO2/CH4 system), the bottleneck is how to enhance the selectivity of CO2 hydration. For these gases, scale-up is the main difficulty. Also, this paper explored the possibility of separating different gases by selective hydrate formation and reviewed the progress of CO2 separation from shifted synthesis gas, flue gas and sour natural gas or biogas.  相似文献   

8.
Knowledge of carbon isotope fractionation is needed in order to discuss the formation and dissociation of naturally occurring CO2 hydrates. We investigated carbon isotope fractionation during CO2 hydrate formation and measured the three-phase equilibria of 12CO2–H2O and 13CO2–H2O systems. From a crystal structure viewpoint, the difference in the Raman spectra of hydrate-bound 12CO2 and 13CO2 was revealed, although their unit cell size was similar. The δ13C of hydrate-bound CO2 was lower than that of the residual CO2 (1.0–1.5‰) in a formation temperature ranging between 226 K and 278 K. The results show that the small difference between equilibrium pressures of ~0.01 MPa in 12CO2 and 13CO2 hydrates causes carbon isotope fractionation of ~1‰. However, the difference between equilibrium pressures in the 12CO2–H2O and 13CO2–H2O systems was smaller than the standard uncertainties of measurement; more accurate pressure measurement is required for quantitative discussion.  相似文献   

9.
《Fluid Phase Equilibria》2005,233(2):190-193
Isothermal phase equilibrium (pressure–composition in the gas phase) for the ternary system of H2 + CO2 + H2O has been investigated in the presence of gas hydrate phase. Three-phase equilibrium pressure increases with the H2 composition of gas phase. The Raman spectra suggest that H2 is not enclathrated in the hydrate-cages and behaves only like the diluent gas toward the formation of CO2 hydrate. This fact is also supported by the thermodynamic analysis using Soave–Redlich–Kwong equation of state.  相似文献   

10.
The molecular exchange of CH4 for CO2 in gas hydrates grown in confined nanospace has been evaluated for the first time using activated carbons as a host structure. The nano‐confinement effects taking place inside the carbon cavities and the exceptional physicochemical properties of the carbon structure allows us to accelerate the formation and decomposition process of the gas hydrates from the conventional timescale of hours/days in artificial bulk systems to minutes in confined nanospace. The CH4/CO2 exchange process is fully reversible with high efficiency at practical temperature and pressure conditions. Furthermore, these activated carbons can be envisaged as promising materials for long‐distance natural gas and CO2 transportation because of the combination of a high storage capacity, a high reversibility, and most important, with extremely fast kinetics for gas hydrate formation and release.  相似文献   

11.
This study evaluates the kinetic hydrate inhibition (KHI) performance of four quaternary ammonium hydroxides (QAH) on mixed CH4 + CO2 hydrate systems. The studied QAHs are; tetraethylammonium hydroxide (TEAOH), tetrabutylammonium hydroxide (TBAOH), tetramethylammonium hydroxide (TMAOH), and tetrapropylammonium hydroxide (TPrAOH). The test was performed in a high-pressure hydrate reactor at temperatures of 274.0 K and 277.0 K, and a concentration of 1 wt.% using the isochoric cooling method. The kinetics results suggest that all the QAHs potentially delayed mixed CH4 + CO2 hydrates formation due to their steric hindrance abilities. The presence of QAHs reduced hydrate formation risk than the conventional hydrate inhibitor, PVP, at higher subcooling conditions. The findings indicate that increasing QAHs alkyl chain lengths increase their kinetic hydrate inhibition efficacies due to better surface adsorption abilities. QAHs with longer chain lengths have lesser amounts of solute particles to prevent hydrate formation. The outcomes of this study contribute significantly to current efforts to control gas hydrate formation in offshore petroleum pipelines.  相似文献   

12.
The interaction between surfactants and hydrates provides insight into the role of surfactants in promoting hydrate formation. This work aims at understanding the adsorption behavior of sodium dodecyl sulfate (SDS) on cyclopentane (CP) hydrates and its derivative surfactant on tetrabutylammonium bromide (TBAB) hydrates. Cyclopentane (CP) is a hydrophobic former whereas tetrabutylammonium bromide (TBAB) is a salt that forms semiclathrate hydrates. The adsorption on these two hydrates was studied by zeta potential and pyrene fluorescence measurements. CP hydrates have a negative surface charge in the absence of SDS, and it decreases to a minimum as the SDS concentration increases from 0 to 0.17 mM. Then, it increases with further increased SDS concentration. The adsorption density of DS (-) on CP hydrates reaches a saturated value at 1.73 mM SDS. The micropolarity parameter of the TBAB hydrate/water interface starts to increase rapidly at 0.17 mM SDS and levels off at 1.73 mM SDS. The presence of Br (-) in TBAB hydrate suspensions could compete with TBADS (from association of DS (-) and TBA (+)) and DS (-) for the adsorption on the hydrate surface, but they have a much stronger affinity for the hydrates than does Br (-). From the fluorescence measurements, it was found that the micropolarity of the hydrate/water interface is mainly dependent on the polarity of hydrate formers.  相似文献   

13.
The three-phase (vapour + liquid + solid) equilibrium conditions for semi-clathrates formed from three mixtures of (CO2 + N2), in aqueous solutions of tetra-butyl ammonium bromide (TBAB), were measured in an isochoric reactor. The experiments were conducted at temperatures between (281 and 290) K, at pressures between (1.9 and 5.9) MPa and in aqueous TBAB solutions of wTBAB = (0.05, 0.10, and 0.20). The experimental results obtained in this study were compared with previously obtained results for gas hydrates, formed from the same three mixtures of (CO2 + N2) and it was observed that semi-clathrates formed at a substantially lower pressure than did gas hydrates.  相似文献   

14.
Tetrahydrofuran (THF) is one of the most widely used analogues for gas hydrates as well as a commonly used additive for reducing the formation pressure of a given hydrate process. Hydrates are also currently being investigated as storage materials for hydrogen as well as materials for hydrogen separations. Here we present a thermodynamic model, based on the CSMGem framework, that accurately captures the phase behavior of various hydrates containing THF and hydrogen. The model uses previously regressed parameters for components other than THF and H2, and can reproduce hydrate formation conditions for a number of hydrates containing THF and/or hydrogen (simple THF, THF + CH4, THF + N2, THF + CO2, THF + H2, CH4 + H2, C2H6 + H2 and C3H8 + H2). The incorporation of THF and H2 within this model framework will serve as a valuable tool for hydrate scenarios involving either of these components.  相似文献   

15.
16.
In order to study the thermal properties of new type environment-friendly binary hydrate for cold storage in air-conditioning system, tests have been carried out by DSC comprehensively on the phase-change temperature and fusion heat of TBAB hydrate, THF hydrate, and TBAB–THF hydrate mixture. The results show a good trend that TBAB–THF hydrate has the superiority for more proper phase-change temperature and increased fusion heat. A broader and more developed view is that adding appropriate amount of hydrate with lower phase-change temperature to hydrate with higher one can make the hydrate mixture more suitable for cold storage (especially for 278–281 K); some hydrates with lower phase-change temperature can even make the fusion heat of mixture hydrate increased greatly. Several new environmental working pairs for binary gas hydrates have been listed to help to promote the application.  相似文献   

17.
Sodium dodecyl sulfate (SDS) has been well known as a promoter for the formation of hydrates. However, the use of SDS to enhance the formation of CO2 hydrates has not been effective. This work will present an idea of competitive adsorption that will provide insights into the nonpromoting effect of SDS under high carbonate concentrations. The competitive adsorption is studied between DS? monomers and carbonate ions on tetrahydrofuran (THF) hydrates. The adsorption is qualitatively investigated by using pyrene fluorescence measurements. The SDS concentration at which hydrophobic domains occur on the hydrate surface increases with the increased carbonate concentration and this trend is less dependent on the order of addition of these two species. This concentration is 0.17 mM at carbonate concentrations less than 2 μM and it shifts to 3.47 mM at carbonate concentrations higher than 2.5 μM. Thus, using carbonate with its concentration higher than 2.5 μM would be enough to displace the hydrophobic domains formed by SDS up to the solubility limit.  相似文献   

18.
Gas hydrate is a new technology for energy gas (methane/hydrogen) storage due to its large capacity of gas storage and safe. But industrial application of hydrate storage process was hindered by some problems. For methane, the main problems are low formation rate and storage capacity, which can be solved by strengthening mass and heat transfer, such as adding additives, stirring, bubbling, etc. One kind of additives can change the equilibrium curve to reduce the formation pressure of methane hydrate, and the other kind of additives is surfactant, which can form micelle with water and increase the interface of water-gas. Dry water has the similar effects on the methane hydrate as surfactant. Additionally, stirring, bubbling, and spraying can increase formation rate and storage capacity due to mass transfer strengthened. Inserting internal or external heat exchange also can improve formation rate because of good heat transfer. For hydrogen, the main difficulties are very high pressure for hydrate formed. Tetrahydrofuran (THF), tetrabutylammonium bromide (TBAB) and tetrabutylammonium fluoride (TBAF) have been proved to be able to decrease the hydrogen hydrate formation pressure significantly.  相似文献   

19.
Gas hydrate is a new technology for energy gas(methane/hydrogen)storage due to its large capacity of gas storage and safe.But industrial application of hydrate storage process was hindered by someproblems.For methane,the main problems are low formation rateand storage capacity,which can be solved by strengthening mass andheat transfer,such as adding additives,stirring,bubbling,etc.Onekind of additives can change the equilibrium curve to reduce the formation pressure of methane hydrate,and the other kind of additivesis surfactant,which can form micelle with water and increase the interface of water-gas.Dry water has the similar effects on the methanehydrate as surfactant.Additionally,stirring,bubbling,and sprayingcan increase formation rate and storage capacity due to mass transferstrengthened.Inserting internal or external heat exchange also canimprove formation rate because of good heat transfer.For hydrogen,the main difficulties are very high pressure for hydrate formed.Tetrahydrofuran(THF),tetrabutylammonium bromide(TBAB) andtetrabutylammonium fluoride(TBAF) have been proved to be able todecrease the hydrogen hydrate formation pressure significantly.  相似文献   

20.
The thermal properties of {tetra-n-butylammonium bromide + tetra-n-butylammonium chloride (TBAB + TBAC)} mixed semiclathrate hydrates prepared from aqueous solutions were investigated by dissociation temperature measurements and differential scanning calorimetry (DSC). The maximum dissociation temperature of the mixed hydrate crystals at 0.1 MPa is 288.5 K for xTBAB = 0.2 {mole fraction of TBAB to (TBAB + TBAC)}, which is higher than that of the pure hydrates {T = (285.5 and 288.2) K for TBAB and TBAC hydrates, respectively}. In addition, the dissociation enthalpies of the mixed hydrates are higher than those of the pure hydrates {(5.55 ± 0.06) kJ  mol−1 H2O for pure TBAB hydrate and (5.30 ± 0.05) kJ  mol−1 H2O for pure TBAC hydrate}, with a maximum of (5.95 ± 0.12) kJ  mol−1 H2O recorded at approximately xTBAB = 0.4. It was therefore suggested that the crystal distortion in (TBAB + TBAC) mixed hydrates, caused by replacing water molecules by both bromide and chloride anions, was smaller than that observed for each pure hydrate. Consequently, the hydration numbers in the mixed hydrates were hypothesized to be slightly higher than those of the pure hydrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号