首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Circularly polarized luminescence (CPL) organic dyes are currently receiving a great interest, but there are still not many reported observations of CPL spectra of hydrophobic dyes from aqueous solution. We have prepared hydrophobic pyrene derivatives and dissolved them into aqueous solutions with γ-cyclodextrin (γ-CD) by using grinding technique. Among these derivatives, (pyrene-1-carbonyl)serine (PySer) forms a spatially restricted dimer in the hydrophobic chiral cavity of γ-CD and exhibits excimer emission with a high quantum yield of Φf?=?0.68. In addition, circular dichroism and CPL signals were induced for the complex. The strong gCPL value of gCPL?=?+?2.2?×?10?3 was obtained, which may be attributed to the interaction between the hydroxyl groups in the side chain of PySer with those of γ-CD and it strengthens the chiral dimeric structure.

Graphic abstract
  相似文献   

2.
Yan  Shiqiang  Jiang  Xia  Wang  Zhaolin  He  Shuwang  Zhang  Wei 《Research on Chemical Intermediates》2022,48(6):2413-2427

A simple, efficient and green approach to the synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones has been developed via one-pot three-component reaction of aromatic aldehyde, malononitrile and phthalhydrazide catalyzed by zinc–proline complex (Zn[L-proline]2) using H2O: PEG400?=?6: 4 as solvent. Atom economy, good to excellent yield, operational simplicity and easy workup are important features of this method.

Graphical abstract
  相似文献   

3.

The triethylamine-based nanomagnetic ionic liquid, [(Et)3 N-H]FeCl4, was synthesized, and its structural and chemical characteristics were detected. The thermogravimetric analysis indicated its high thermal stability with a decomposition temperature higher than 300 °C. Additionally, [(Et)3 N-H]FeCl4 was used to efficiently catalyze the synthesis of xanthene derivatives under solvent-free conditions at 120 °C. [(Et)3 N-H]FeCl4 was recycled and reused at least five times.

Graphical abstract
  相似文献   

4.

Sustainable and renewable production of platform chemicals and fuels has been gradually rising. Formic acid is one of the important chemicals for leather, cosmetic and pharmaceutical industries as well as hydrogen source. In this study, selective oxidation of biomass-derived glucose to formic acid was investigated under base free medium at 70 °C over synthesized hydrotalcite-like catalysts using hydrogen peroxide as oxidant. Effect of Mg/Al ratio (6/1, 3/1, 1/1, 1/3 and 1/6) and heat treatment (drying and calcination) on catalyst structure and product distributions; effect of calcination temperature (450, 650 and 900 °C), solvent composition (ethanol/water) and reaction temperature (30, 50 and 70 °C) on catalytic activity and product selectivity were investigated. Reducing the Mg/Al ratio enhanced the density of metal-OH bonds, surface area and uniformity of pores up to some extent. The highest glucose conversion and formic acid selectivity were achieved over Mg–Al (1:3) catalyst as 38.7 and 99.0%, respectively. The calcined catalysts (at 450 °C) exhibited 7 times higher selectivities and 4 times higher activities than the dried ones. However, higher calcination temperatures did not show remarkable increments in activities and yields. Easily prepared, cheap Mg–Al (1:3) catalyst provided promising results even at low temperature with hydrogen peroxide at atmospheric medium in a low boiling point solvent (ethanol).

Graphical abstract
  相似文献   

5.

We present a new observation of electrochemical oscillation during the reduction of Co2+ from sulfate solution in the presence of but-2-yne-1,4-diol (butynediol) as an additive. Cyclic voltammetry, hydrodynamic voltammetry at galvanostatic condition, and electrochemical impedance spectroscopic studies suggest that the electrochemical oscillation observed was a relaxation type and was the manifestation of adsorbed hydrogen formation by electrochemical reduction of protons on cobalt and their chemical removal by semi-hydrogenation of butynediol to butenediol during the initial stages of electrodeposition.

Graphical abstract

  相似文献   

6.

Hydrogen permeation through a pure palladium film (25 μm thickness, optically dense) is employed to trigger electron transfer (hydrogen-driven) reactions at the external palladium | aqueous electrolyte interface of a two-compartment electrochemical cell. Two systems are investigated to demonstrate feasibility for (i) indirect hydrogen-mediated silver electrodeposition with externally applied potential and (ii) indirect hydrogen-mediated silver electrodeposition driven by external formic acid decomposition. In both cases, porous metal deposits form as observed by optical and electron microscopies. Processes are self-limited as metal deposition blocks the palladium surface and thereby slows down further hydrogen permeation. The proposed methods could be employed for a wider range of metals, and they could provide an alternative (non-electrochemical or indirect) procedure for metal removal or metal recovery processes or for indirect metal sensing.

Graphical abstract

  相似文献   

7.

In this research, a new heterogeneous catalyst is fabricated through covalent modification of iron-based metal–organic framework with ionic liquid. In more detail, using 2-aminoterephthalic acid and iron (III) chloride hexahydrate, amino-functionalized metal–organic framework has been synthesized and then reacted with 2,4,6-trichloro-1,3,5-triazine and 1,4-diazabicyclo[2.2.2]octane successively to furnish ionic liquid on metal–organic framework. The as-prepared catalyst was characterized by FTIR, TGA, BET, SEM/EDS, XRD and elemental mapping analysis and then employed for catalyzing synthesis of pyrano [2,3‐d]pyrimidines (with yields of 80–100%) from one-pot three-component reaction of aldehydes, barbituric acid and malononitrile in aqueous media. The catalytic test inferred high catalytic activity of the catalyst, superior to that of IL and metal–organic framework. Furthermore, the catalyst could be recovered and recycled for five reaction runs with preserving its morphology.

Graphic abstract
  相似文献   

8.
Li  Fangyuan  Guo  Dan  Kang  Lin 《Analytical and bioanalytical chemistry》2019,411(21):5555-5561

G-quadruplexes have been widely researched as new targets for cancer treatment owing to their non-canonical structure and crucial role in biological processes. Although attention has been paid to the development of selective G-quadruplex ligands, few studies have focused on the binding affinity of stereoisomers towards G-quadruplex, which will be conducive to support the optimal design of G-quadruplex ligands in future studies. Here, tetrandrine and isotetrandrine were used to study the binding affinity and difference of stereoisomers towards G-quadruplex structures. The results showed that tetrandrine had a high possibility of binding to the N-myc and Bcl-2 G-quadruplexes through hydrogen bonding, whereas the possibility of binding of isotetrandrine was low and it seemed to have no possibility of forming hydrogen bonds. Our study shows that optical isomerism of ligand molecules has an important effect on G-quadruplex recognition, which is helpful for the design of G-quadruplex ligands in future studies.

Graphical abstract

  相似文献   

9.

An efficient and convenient procedure for the synthesis of novel 6-hydroxy-14-aryl-8H-dibenzo[a,i]xanthene-8,13(14H)-dione derivatives has been developed by one-pot, three-component condensation reaction between 2-hydroxynaphthalene-1,4-dione, aromatic aldehydes and 2,3-naphthalenediol in glacial acetic acid under reflux conditions. This domino reaction implies Knoevenagel condensation, Michael addition, intramolecular cyclization and dehydration. The reaction avoids tedious workup procedure due to the direct precipitation of products from the reaction medium. The notable features of this domino transformation are operational simplicity, clean reaction, easy handling, easy purification process and high yields of the products.

Graphical abstract
  相似文献   

10.
Zhu  Qiuxiao  Wang  Tingting  Wei  Yuhe  Sun  Xiaoping  Zhang  Sheng  Wang  Xuchong  Luo  Lianxin 《Cellulose (London, England)》2022,29(16):8733-8747

Cellulose-based triboelectric nanogenerators (TENGs) can provide power for various monitoring devices and are environmentally friendly and sustainable. Chemical functional modification is a common method to improve the electrical output performance of cellulose-based TENGs. In this work, an environmentally friendly high-performance triboelectric nanogenerator based on a polydopamine/cellulose nanofibril (PDA/CNF) composite membrane and fluorinated ethylene propylene was developed. Dopamine generates polydopamine nanoparticles through oxidative self-polymerization and adheres to the surface of nanofibers. The synergistic effect of amino group introduction and membrane surface microstructure effectively enhanced the output performance of TENGs to a certain extent. The effects of PDA content, CNF composite film thickness and different working conditions on the electrical output were systematically investigated. The optimized PDA/CNF-TENGs exhibited an enhanced electrical output performance with voltage, current, and power density values of ≈205 V, ≈20 µA, and ≈48.75 μW·cm?2, respectively. The PDA/CNF-TENGs exhibited stable and identifiable signals when used as a self-powered sensor for human motion monitoring, showing the potential prospects of cellulose materials for TENGS and other electronic applications.

Graphical abstract
  相似文献   

11.

In CO2 transformation catalysis, the synthesis of cyclic carbonates using two classes of MOF catalysts viz., zeolitic imidazolate frameworks (ZIF) and MOFs with carboxylate-capped SBUs have gained large attention. Herein we propose the strategy of employing a unified multifunctional framework formed in the metal-centered assembly of imidazole and amino-carboxylates for CO2 transformation, such as propylene carbonate (PC) by the cycloaddition of CO2 with propylene oxide. The framework {[Cu(L-asp)(1,4-bix)0.5]·3H2O}n (CuAspBix) comprises of the amino acid building units, L-aspartic acid (L-Asp) and the flexible ligand, 1,4-bis(imidazole-1-yl methyl)benzene [1,4-Bix]. The 1,4-Bix ligand with imidazole terminals renders elongated M-M distances and flexibility in comparison with pristine ZIF materials. The cumbersome synthesis procedure poor phase purity of the bulk catalyst in solvothermal conditions were improved by a microwave-assisted synthesis, preserving the structural and physicochemical properties. Minimal energy input or room temperatures for the catalysis occurred via the synergistic participation of CuAspBix and quaternary ammonium bromide salt, demonstrated by density-functional theory computational studies to propose mechanistic pathway of the reaction. Reaction conditions were optimized by altering the parameters. The heterogeneous catalyst was reused four times without a significant change in activity.

Graphic abstract
  相似文献   

12.

The i-motif is a biologically relevant non-canonical DNA structure formed by cytosine-rich sequences. Despite the importance of the factors affecting the formation/stability of such a structure, like pH, cation type and concentration, no systematic study that simultaneously analysed their effect on the i-motif in vitro has been carried out so far. Therefore, here we report a systematic study that aims to evaluate the effect of these factors, and their possible interaction, on the formation of an i-motif structure. Our results confirm that pH plays the main role in i-motif formation. However, we demonstrate that the effect of the cation concentration on the i-motif is strictly dependent on the pH, while no significant differences are observed among the investigated cation types.

Graphical abstract

  相似文献   

13.

An eco-friendly method for diversity-oriented synthesis of substituted dihydropyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives has been achieved via one-pot and multicomponent reaction in the presence of PdO/Al-SBA-15 as an efficient and recyclable catalyst in H2O/EtOH under reflux conditions. The significant merits of this method are wide scope, high yields of the desired products, short reaction times and simple workup procedure. In addition, this nanocatalyst was simply recovered and reused five times without significant loss in catalytic activity and also performance.

Graphical abstract
  相似文献   

14.

N-Methylpyrrolidine catalyzed, concise and attractive synthesis of a new class of 3-hydroxy-3,5/6-di-aryl-1H-imidazo[1,2-a]imidazol-2(3H)-ones was attained with impressive yields, in the presence of EtOH as a solvent, by means of a convenient and elegant condensation reaction between different aryl glyoxal monohydrates and guanidine hydrochloride under reflux conditions. Some specific merits of the current procedure, including encompasses low operating cost, availability of the starting substrates, reasonable reaction times, high reaction yield, operational simplicity, cleaner reaction profile, no harmful by-products, and the isolated product is in pure form. Structures of all the freshly synthesized products have been deduced by their FT-IR, 1H-NMR, 13C-NMR, Mass spectrometry data and microanalysis.

Graphical abstract
  相似文献   

15.
Wang  Li  Wu  Jindi  Su  Xiaolong  Huang  Jian  Zhang  Peng  Zhao  Saidi  Su  Biyun  Xu  Benhua 《Transition Metal Chemistry》2022,47(7-8):275-281

A novel linear tetranuclear Ni(II) complex Ni4L2 {[Ni4L2(H2O)3CH3OH]·CH3OH·2CH3CN·2H2O} was constructed by employing a well-tailored compartmental ligand H4L = (2E,N'E)-N'-(1-(3-((E)-2-hydroxy-3-methoxybenzylideneamino)-2-hydroxyphenyl)ethylidene)-2 -(hydroxyimino)propanehydrazideas with equal equivalent NiCl2·6H2O and NaOH via solvothermal reaction. The complex was well characterized by X-ray crystallography, elemental analysis, infrared emission spectra, UV–visible absorption spectra and thermogravimetry. The crystal structure shows that four nickel ions coordinate with two ligands to form a unique linear structure of Ni4L2. Besides, Ni4L2 act as a catalyst showed good catalytic activity for polymerization of methyl methacrylate (MMA) to obtain PMMA under mild condition.

Graphical abstract
  相似文献   

16.
Guo  Xun  Wang  Yang  Ren  Yuanlin  Liu  Xiaohui 《Cellulose (London, England)》2021,28(10):6679-6698

How to improve the flame retardancy of lyocell fibers has become an important issue in textile industry. Herein, lyocell fibers were firstly undergone etherification reaction between sodium chloroacetate and the hydroxyl groups of lyocell fibers to obtain carboxymethylated lyocell fibers (CM-lyocell), then the sodium ions of CM-lyocell were replaced by aluminum ions, and the flame retardant lyocell fibers (FR-lyocell) were prepared. Compared with lyocell fibers, the degradation temperature of FR-lyocell decreased by about 80 °C, and the char residue in nitrogen increased from 15.1 to 31.8 wt% at 800 °C. Importantly, the limiting oxygen index (LOI) value of FR-lyocell fabric was increased from 17.2 to 26.4%. Besides, the peak of heat release rate (PHRR) and total heat release (THR) of FR-lyocell had 77.4% and 76.3% reduction, respectively. The FR-lyocell can generate a highly graphitized char layer and release more water at high temperatures, which are beneficial to improving the flame retardancy of lyocell fibers. Moreover, the tensile test showed that the tensile strength of FR-lyocell decreased from 3.95 to 3.08 cN/dtex with a 22% reduction, showing good strength retention.

Graphic abstract
  相似文献   

17.
Bai  Huiyu  Yu  Cheng  Zhu  Haiyan  Zhang  Shengwen  Ma  Piming  Dong  Weifu 《Cellulose (London, England)》2022,29(2):893-906

Inspired by mussels, a new cellulose-based (CTP) adhesive was fabricated by simply blending via cellulose nanofibrils (CNFs), tannic acid (TA), and polyethyleneimine (PEI), where the preparation method was green, facile, and simple. The structure and properties were examined by FT-IR, TGA, XRD, SEM, lap shear tensile, and water absorption tests. The results showed that chemical bonds, hydrogen bonds, and chain entanglement were formed among CNFs, TA, and PEI. Compared with the CNF adhesive, the dry shear strength of the CTP adhesive increased 103% to 392.2?±?32.2 kPa. And the wet shear strength of CTP adhesive increased from 0 kPa to 144.7?±?20.1 kPa, indicating that the CTP adhesive can be used in humid or even water environments. Meanwhile, the water absorption of CTP adhesive decreased from 37.9?±?14.1% to 12.8?±?5.9%. It was the introduction of catechol groups and physical–chemical interactions of three components that endow the CTP adhesive with improved dry and wet adhesion strength and water resistance. Moreover, the proposed CTP adhesive could be used on the surface of various materials, including rubber, plastic, paper, wood, metal, and glass. Overall, this work shows that the CTP adhesive has a wide range of application prospects.

Graphical abstract
  相似文献   

18.

Aluminum sacrificial anodes are currently the first choice for cathodic protection in numerous applications. The galvanic performance of aluminum-based sacrificial anodes is considerably enhanced by addition of certain alloying elements called activators. Recent researches proved that incorporation of specific metal oxides like MnO2, CeO2, RuO2, and IrO2 into the aluminum matrix could enhance the galvanic efficiency of aluminum anodes; however, the mechanism by which metal oxides improve galvanic properties of aluminum is still subject to discussion. The present work investigates the effect of incorporating commercially available low-cost manganese dioxide concentrate into Al-5Zn-0.1Sn sacrificial anodes in different volume fractions. It also studies the influence of heat treatment on anode’s galvanic performance by performing solution treatment at 3 different temperatures (250 °C, 400 °C, 550 °C). The electrochemical testing results proved an increase in efficiency of anodes incorporated with metal oxides and solution treated at 550 °C. The SEM imaging and EDX elemental mapping declared that the presence of SiO2 particles in the anode matrix which might cause effective and uniform corrosion of Al anodes and decreased non-coulombic losses.

Graphical abstract
  相似文献   

19.

Water, as a byproduct in esterification, tends to adsorb on solid acid catalysts, causing loss of active components or decomposition of framework and thereby decreasing their reactivity and durability, while the development of water-tolerant solid acids is expected to solve these problems. In this review, the recent developments of major kinds of water-tolerant solid acids including zeolite, mesoporous silica, metal organic framework-based catalyst, magnetic nanoparticles, and polymeric catalyst are discussed in detail. Special attention has been paid to understand the role of hydrophobicity, acid strength, and structure of water-tolerant solid acids in catalytic performance and their stability. From the literature survey, it is found that despite the modified zeolites have a water contact angle as large as 160°, but their acid strength need to be improved and their small micropore sizes restrict their use in catalyzing the esterification of bulky molecules. In contrast, solid acids with abundant acid sites, suitable hydrophobicity, and abundant mesopores or macropores usually exhibit high activity and reusability. Among all the known solid acids, polystyrene-supported acidic ionic liquid catalysts (PS-CH2-[SO3H-pIM] [HSO4]) show a high yield of n-butyl acetate with 99.1% and high reusability of 13 times, which is a breakthrough over the traditional. This review aims to offer a comprehensive understanding for the water-tolerant solid acid catalysts in esterification.

Graphic Abstract
  相似文献   

20.

d-Sorbitol-cored PAMAM dendrimer (SOR-G1) was effectively synthesized by the ring opening polymerization of epichlorohydrin. The dendrimer was characterized using different spectroscopic and analytical techniques including IR and NMR spectroscopy, TG–DTA, and GPC. Dihydropyrano[3,2-c]chromene derivatives were synthesized using SOR-G1 as a catalyst, and it was synthesized within 30 min in ethanol/water medium and excellent yield was obtained. SOR-G1 acted as a good base catalyst on the basis of amine capacity and good thermal stability. The prepared dihydropyrano[3,2-c]chromene derivatives were characterized using GCMS, LCMS, IR, 1H NMR, and 13C NMR spectra. The catalyst could be reused up to three reaction cycles without losing its catalytic activity.

Graphic abstract
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号